Metamath Proof Explorer


Theorem dmnrngo

Description: A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Assertion dmnrngo ( 𝑅 ∈ Dmn → 𝑅 ∈ RingOps )

Proof

Step Hyp Ref Expression
1 dmncrng ( 𝑅 ∈ Dmn → 𝑅 ∈ CRingOps )
2 crngorngo ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps )
3 1 2 syl ( 𝑅 ∈ Dmn → 𝑅 ∈ RingOps )