Metamath Proof Explorer


Theorem crngorngo

Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion crngorngo ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps )

Proof

Step Hyp Ref Expression
1 iscrngo ( 𝑅 ∈ CRingOps ↔ ( 𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2 ) )
2 1 simplbi ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps )