Description: A commutative ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | crngorngo | ⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscrngo | ⊢ ( 𝑅 ∈ CRingOps ↔ ( 𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2 ) ) | |
| 2 | 1 | simplbi | ⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) |