Step |
Hyp |
Ref |
Expression |
1 |
|
dmnnzd.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
dmnnzd.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
dmnnzd.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
dmnnzd.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 ) |
6 |
1 2 3 4 5
|
isdmn3 |
⊢ ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) |
7 |
6
|
simp3bi |
⊢ ( 𝑅 ∈ Dmn → ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) |
8 |
|
oveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 𝐻 𝑏 ) = ( 𝐴 𝐻 𝑏 ) ) |
9 |
8
|
eqeq1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 𝐻 𝑏 ) = 𝑍 ↔ ( 𝐴 𝐻 𝑏 ) = 𝑍 ) ) |
10 |
|
eqeq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 = 𝑍 ↔ 𝐴 = 𝑍 ) ) |
11 |
10
|
orbi1d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ↔ ( 𝐴 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) |
12 |
9 11
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ↔ ( ( 𝐴 𝐻 𝑏 ) = 𝑍 → ( 𝐴 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑏 = 𝐵 → ( 𝐴 𝐻 𝑏 ) = ( 𝐴 𝐻 𝐵 ) ) |
14 |
13
|
eqeq1d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 𝐻 𝑏 ) = 𝑍 ↔ ( 𝐴 𝐻 𝐵 ) = 𝑍 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑏 = 𝐵 → ( 𝑏 = 𝑍 ↔ 𝐵 = 𝑍 ) ) |
16 |
15
|
orbi2d |
⊢ ( 𝑏 = 𝐵 → ( ( 𝐴 = 𝑍 ∨ 𝑏 = 𝑍 ) ↔ ( 𝐴 = 𝑍 ∨ 𝐵 = 𝑍 ) ) ) |
17 |
14 16
|
imbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ( 𝐴 𝐻 𝑏 ) = 𝑍 → ( 𝐴 = 𝑍 ∨ 𝑏 = 𝑍 ) ) ↔ ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍 ∨ 𝐵 = 𝑍 ) ) ) ) |
18 |
12 17
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑎 ∈ 𝑋 ∀ 𝑏 ∈ 𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍 ∨ 𝑏 = 𝑍 ) ) → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍 ∨ 𝐵 = 𝑍 ) ) ) ) |
19 |
7 18
|
syl5com |
⊢ ( 𝑅 ∈ Dmn → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍 ∨ 𝐵 = 𝑍 ) ) ) ) |
20 |
19
|
expd |
⊢ ( 𝑅 ∈ Dmn → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍 ∨ 𝐵 = 𝑍 ) ) ) ) ) |
21 |
20
|
3imp2 |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐵 ) = 𝑍 ) ) → ( 𝐴 = 𝑍 ∨ 𝐵 = 𝑍 ) ) |