Metamath Proof Explorer


Theorem dmnnzd

Description: A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses dmnnzd.1 𝐺 = ( 1st𝑅 )
dmnnzd.2 𝐻 = ( 2nd𝑅 )
dmnnzd.3 𝑋 = ran 𝐺
dmnnzd.4 𝑍 = ( GId ‘ 𝐺 )
Assertion dmnnzd ( ( 𝑅 ∈ Dmn ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) = 𝑍 ) ) → ( 𝐴 = 𝑍𝐵 = 𝑍 ) )

Proof

Step Hyp Ref Expression
1 dmnnzd.1 𝐺 = ( 1st𝑅 )
2 dmnnzd.2 𝐻 = ( 2nd𝑅 )
3 dmnnzd.3 𝑋 = ran 𝐺
4 dmnnzd.4 𝑍 = ( GId ‘ 𝐺 )
5 eqid ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 )
6 1 2 3 4 5 isdmn3 ( 𝑅 ∈ Dmn ↔ ( 𝑅 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ∀ 𝑎𝑋𝑏𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍𝑏 = 𝑍 ) ) ) )
7 6 simp3bi ( 𝑅 ∈ Dmn → ∀ 𝑎𝑋𝑏𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍𝑏 = 𝑍 ) ) )
8 oveq1 ( 𝑎 = 𝐴 → ( 𝑎 𝐻 𝑏 ) = ( 𝐴 𝐻 𝑏 ) )
9 8 eqeq1d ( 𝑎 = 𝐴 → ( ( 𝑎 𝐻 𝑏 ) = 𝑍 ↔ ( 𝐴 𝐻 𝑏 ) = 𝑍 ) )
10 eqeq1 ( 𝑎 = 𝐴 → ( 𝑎 = 𝑍𝐴 = 𝑍 ) )
11 10 orbi1d ( 𝑎 = 𝐴 → ( ( 𝑎 = 𝑍𝑏 = 𝑍 ) ↔ ( 𝐴 = 𝑍𝑏 = 𝑍 ) ) )
12 9 11 imbi12d ( 𝑎 = 𝐴 → ( ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍𝑏 = 𝑍 ) ) ↔ ( ( 𝐴 𝐻 𝑏 ) = 𝑍 → ( 𝐴 = 𝑍𝑏 = 𝑍 ) ) ) )
13 oveq2 ( 𝑏 = 𝐵 → ( 𝐴 𝐻 𝑏 ) = ( 𝐴 𝐻 𝐵 ) )
14 13 eqeq1d ( 𝑏 = 𝐵 → ( ( 𝐴 𝐻 𝑏 ) = 𝑍 ↔ ( 𝐴 𝐻 𝐵 ) = 𝑍 ) )
15 eqeq1 ( 𝑏 = 𝐵 → ( 𝑏 = 𝑍𝐵 = 𝑍 ) )
16 15 orbi2d ( 𝑏 = 𝐵 → ( ( 𝐴 = 𝑍𝑏 = 𝑍 ) ↔ ( 𝐴 = 𝑍𝐵 = 𝑍 ) ) )
17 14 16 imbi12d ( 𝑏 = 𝐵 → ( ( ( 𝐴 𝐻 𝑏 ) = 𝑍 → ( 𝐴 = 𝑍𝑏 = 𝑍 ) ) ↔ ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍𝐵 = 𝑍 ) ) ) )
18 12 17 rspc2v ( ( 𝐴𝑋𝐵𝑋 ) → ( ∀ 𝑎𝑋𝑏𝑋 ( ( 𝑎 𝐻 𝑏 ) = 𝑍 → ( 𝑎 = 𝑍𝑏 = 𝑍 ) ) → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍𝐵 = 𝑍 ) ) ) )
19 7 18 syl5com ( 𝑅 ∈ Dmn → ( ( 𝐴𝑋𝐵𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍𝐵 = 𝑍 ) ) ) )
20 19 expd ( 𝑅 ∈ Dmn → ( 𝐴𝑋 → ( 𝐵𝑋 → ( ( 𝐴 𝐻 𝐵 ) = 𝑍 → ( 𝐴 = 𝑍𝐵 = 𝑍 ) ) ) ) )
21 20 3imp2 ( ( 𝑅 ∈ Dmn ∧ ( 𝐴𝑋𝐵𝑋 ∧ ( 𝐴 𝐻 𝐵 ) = 𝑍 ) ) → ( 𝐴 = 𝑍𝐵 = 𝑍 ) )