Step |
Hyp |
Ref |
Expression |
1 |
|
dmnnzd.1 |
|- G = ( 1st ` R ) |
2 |
|
dmnnzd.2 |
|- H = ( 2nd ` R ) |
3 |
|
dmnnzd.3 |
|- X = ran G |
4 |
|
dmnnzd.4 |
|- Z = ( GId ` G ) |
5 |
|
eqid |
|- ( GId ` H ) = ( GId ` H ) |
6 |
1 2 3 4 5
|
isdmn3 |
|- ( R e. Dmn <-> ( R e. CRingOps /\ ( GId ` H ) =/= Z /\ A. a e. X A. b e. X ( ( a H b ) = Z -> ( a = Z \/ b = Z ) ) ) ) |
7 |
6
|
simp3bi |
|- ( R e. Dmn -> A. a e. X A. b e. X ( ( a H b ) = Z -> ( a = Z \/ b = Z ) ) ) |
8 |
|
oveq1 |
|- ( a = A -> ( a H b ) = ( A H b ) ) |
9 |
8
|
eqeq1d |
|- ( a = A -> ( ( a H b ) = Z <-> ( A H b ) = Z ) ) |
10 |
|
eqeq1 |
|- ( a = A -> ( a = Z <-> A = Z ) ) |
11 |
10
|
orbi1d |
|- ( a = A -> ( ( a = Z \/ b = Z ) <-> ( A = Z \/ b = Z ) ) ) |
12 |
9 11
|
imbi12d |
|- ( a = A -> ( ( ( a H b ) = Z -> ( a = Z \/ b = Z ) ) <-> ( ( A H b ) = Z -> ( A = Z \/ b = Z ) ) ) ) |
13 |
|
oveq2 |
|- ( b = B -> ( A H b ) = ( A H B ) ) |
14 |
13
|
eqeq1d |
|- ( b = B -> ( ( A H b ) = Z <-> ( A H B ) = Z ) ) |
15 |
|
eqeq1 |
|- ( b = B -> ( b = Z <-> B = Z ) ) |
16 |
15
|
orbi2d |
|- ( b = B -> ( ( A = Z \/ b = Z ) <-> ( A = Z \/ B = Z ) ) ) |
17 |
14 16
|
imbi12d |
|- ( b = B -> ( ( ( A H b ) = Z -> ( A = Z \/ b = Z ) ) <-> ( ( A H B ) = Z -> ( A = Z \/ B = Z ) ) ) ) |
18 |
12 17
|
rspc2v |
|- ( ( A e. X /\ B e. X ) -> ( A. a e. X A. b e. X ( ( a H b ) = Z -> ( a = Z \/ b = Z ) ) -> ( ( A H B ) = Z -> ( A = Z \/ B = Z ) ) ) ) |
19 |
7 18
|
syl5com |
|- ( R e. Dmn -> ( ( A e. X /\ B e. X ) -> ( ( A H B ) = Z -> ( A = Z \/ B = Z ) ) ) ) |
20 |
19
|
expd |
|- ( R e. Dmn -> ( A e. X -> ( B e. X -> ( ( A H B ) = Z -> ( A = Z \/ B = Z ) ) ) ) ) |
21 |
20
|
3imp2 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ ( A H B ) = Z ) ) -> ( A = Z \/ B = Z ) ) |