| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmncan.1 |
|- G = ( 1st ` R ) |
| 2 |
|
dmncan.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
dmncan.3 |
|- X = ran G |
| 4 |
|
dmncan.4 |
|- Z = ( GId ` G ) |
| 5 |
|
dmnrngo |
|- ( R e. Dmn -> R e. RingOps ) |
| 6 |
|
eqid |
|- ( /g ` G ) = ( /g ` G ) |
| 7 |
1 2 3 6
|
rngosubdi |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B ( /g ` G ) C ) ) = ( ( A H B ) ( /g ` G ) ( A H C ) ) ) |
| 8 |
5 7
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B ( /g ` G ) C ) ) = ( ( A H B ) ( /g ` G ) ( A H C ) ) ) |
| 9 |
8
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( A H ( B ( /g ` G ) C ) ) = ( ( A H B ) ( /g ` G ) ( A H C ) ) ) |
| 10 |
9
|
eqeq1d |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
| 11 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
| 12 |
5 11
|
syl |
|- ( R e. Dmn -> G e. GrpOp ) |
| 13 |
3 6
|
grpodivcl |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B ( /g ` G ) C ) e. X ) |
| 14 |
13
|
3expb |
|- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( B ( /g ` G ) C ) e. X ) |
| 15 |
12 14
|
sylan |
|- ( ( R e. Dmn /\ ( B e. X /\ C e. X ) ) -> ( B ( /g ` G ) C ) e. X ) |
| 16 |
15
|
adantlr |
|- ( ( ( R e. Dmn /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( B ( /g ` G ) C ) e. X ) |
| 17 |
1 2 3 4
|
dmnnzd |
|- ( ( R e. Dmn /\ ( A e. X /\ ( B ( /g ` G ) C ) e. X /\ ( A H ( B ( /g ` G ) C ) ) = Z ) ) -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) |
| 18 |
17
|
3exp2 |
|- ( R e. Dmn -> ( A e. X -> ( ( B ( /g ` G ) C ) e. X -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) ) ) |
| 19 |
18
|
imp31 |
|- ( ( ( R e. Dmn /\ A e. X ) /\ ( B ( /g ` G ) C ) e. X ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) |
| 20 |
16 19
|
syldan |
|- ( ( ( R e. Dmn /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) |
| 21 |
20
|
exp43 |
|- ( R e. Dmn -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) ) ) ) |
| 22 |
21
|
3imp2 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) |
| 23 |
|
neor |
|- ( ( A = Z \/ ( B ( /g ` G ) C ) = Z ) <-> ( A =/= Z -> ( B ( /g ` G ) C ) = Z ) ) |
| 24 |
22 23
|
imbitrdi |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A =/= Z -> ( B ( /g ` G ) C ) = Z ) ) ) |
| 25 |
24
|
com23 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A =/= Z -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( B ( /g ` G ) C ) = Z ) ) ) |
| 26 |
25
|
imp |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( B ( /g ` G ) C ) = Z ) ) |
| 27 |
10 26
|
sylbird |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z -> ( B ( /g ` G ) C ) = Z ) ) |
| 28 |
12
|
adantr |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
| 29 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
| 30 |
29
|
3adant3r3 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
| 31 |
5 30
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
| 32 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( A H C ) e. X ) |
| 33 |
32
|
3adant3r2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
| 34 |
5 33
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
| 35 |
3 4 6
|
grpoeqdivid |
|- ( ( G e. GrpOp /\ ( A H B ) e. X /\ ( A H C ) e. X ) -> ( ( A H B ) = ( A H C ) <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
| 36 |
28 31 34 35
|
syl3anc |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) = ( A H C ) <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
| 37 |
36
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H B ) = ( A H C ) <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
| 38 |
3 4 6
|
grpoeqdivid |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
| 39 |
38
|
3expb |
|- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
| 40 |
12 39
|
sylan |
|- ( ( R e. Dmn /\ ( B e. X /\ C e. X ) ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
| 41 |
40
|
3adantr1 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
| 42 |
41
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
| 43 |
27 37 42
|
3imtr4d |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H B ) = ( A H C ) -> B = C ) ) |