Step |
Hyp |
Ref |
Expression |
1 |
|
dmncan.1 |
|- G = ( 1st ` R ) |
2 |
|
dmncan.2 |
|- H = ( 2nd ` R ) |
3 |
|
dmncan.3 |
|- X = ran G |
4 |
|
dmncan.4 |
|- Z = ( GId ` G ) |
5 |
|
dmnrngo |
|- ( R e. Dmn -> R e. RingOps ) |
6 |
|
eqid |
|- ( /g ` G ) = ( /g ` G ) |
7 |
1 2 3 6
|
rngosubdi |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B ( /g ` G ) C ) ) = ( ( A H B ) ( /g ` G ) ( A H C ) ) ) |
8 |
5 7
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B ( /g ` G ) C ) ) = ( ( A H B ) ( /g ` G ) ( A H C ) ) ) |
9 |
8
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( A H ( B ( /g ` G ) C ) ) = ( ( A H B ) ( /g ` G ) ( A H C ) ) ) |
10 |
9
|
eqeq1d |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
11 |
1
|
rngogrpo |
|- ( R e. RingOps -> G e. GrpOp ) |
12 |
5 11
|
syl |
|- ( R e. Dmn -> G e. GrpOp ) |
13 |
3 6
|
grpodivcl |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B ( /g ` G ) C ) e. X ) |
14 |
13
|
3expb |
|- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( B ( /g ` G ) C ) e. X ) |
15 |
12 14
|
sylan |
|- ( ( R e. Dmn /\ ( B e. X /\ C e. X ) ) -> ( B ( /g ` G ) C ) e. X ) |
16 |
15
|
adantlr |
|- ( ( ( R e. Dmn /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( B ( /g ` G ) C ) e. X ) |
17 |
1 2 3 4
|
dmnnzd |
|- ( ( R e. Dmn /\ ( A e. X /\ ( B ( /g ` G ) C ) e. X /\ ( A H ( B ( /g ` G ) C ) ) = Z ) ) -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) |
18 |
17
|
3exp2 |
|- ( R e. Dmn -> ( A e. X -> ( ( B ( /g ` G ) C ) e. X -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) ) ) |
19 |
18
|
imp31 |
|- ( ( ( R e. Dmn /\ A e. X ) /\ ( B ( /g ` G ) C ) e. X ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) |
20 |
16 19
|
syldan |
|- ( ( ( R e. Dmn /\ A e. X ) /\ ( B e. X /\ C e. X ) ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) |
21 |
20
|
exp43 |
|- ( R e. Dmn -> ( A e. X -> ( B e. X -> ( C e. X -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) ) ) ) |
22 |
21
|
3imp2 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A = Z \/ ( B ( /g ` G ) C ) = Z ) ) ) |
23 |
|
neor |
|- ( ( A = Z \/ ( B ( /g ` G ) C ) = Z ) <-> ( A =/= Z -> ( B ( /g ` G ) C ) = Z ) ) |
24 |
22 23
|
syl6ib |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( A =/= Z -> ( B ( /g ` G ) C ) = Z ) ) ) |
25 |
24
|
com23 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A =/= Z -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( B ( /g ` G ) C ) = Z ) ) ) |
26 |
25
|
imp |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H ( B ( /g ` G ) C ) ) = Z -> ( B ( /g ` G ) C ) = Z ) ) |
27 |
10 26
|
sylbird |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z -> ( B ( /g ` G ) C ) = Z ) ) |
28 |
12
|
adantr |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> G e. GrpOp ) |
29 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
30 |
29
|
3adant3r3 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
31 |
5 30
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
32 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( A H C ) e. X ) |
33 |
32
|
3adant3r2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
34 |
5 33
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
35 |
3 4 6
|
grpoeqdivid |
|- ( ( G e. GrpOp /\ ( A H B ) e. X /\ ( A H C ) e. X ) -> ( ( A H B ) = ( A H C ) <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
36 |
28 31 34 35
|
syl3anc |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) = ( A H C ) <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
37 |
36
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H B ) = ( A H C ) <-> ( ( A H B ) ( /g ` G ) ( A H C ) ) = Z ) ) |
38 |
3 4 6
|
grpoeqdivid |
|- ( ( G e. GrpOp /\ B e. X /\ C e. X ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
39 |
38
|
3expb |
|- ( ( G e. GrpOp /\ ( B e. X /\ C e. X ) ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
40 |
12 39
|
sylan |
|- ( ( R e. Dmn /\ ( B e. X /\ C e. X ) ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
41 |
40
|
3adantr1 |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
42 |
41
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( B = C <-> ( B ( /g ` G ) C ) = Z ) ) |
43 |
27 37 42
|
3imtr4d |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ A =/= Z ) -> ( ( A H B ) = ( A H C ) -> B = C ) ) |