Step |
Hyp |
Ref |
Expression |
1 |
|
dmncan.1 |
|- G = ( 1st ` R ) |
2 |
|
dmncan.2 |
|- H = ( 2nd ` R ) |
3 |
|
dmncan.3 |
|- X = ran G |
4 |
|
dmncan.4 |
|- Z = ( GId ` G ) |
5 |
|
dmncrng |
|- ( R e. Dmn -> R e. CRingOps ) |
6 |
1 2 3
|
crngocom |
|- ( ( R e. CRingOps /\ A e. X /\ C e. X ) -> ( A H C ) = ( C H A ) ) |
7 |
6
|
3adant3r2 |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) = ( C H A ) ) |
8 |
1 2 3
|
crngocom |
|- ( ( R e. CRingOps /\ B e. X /\ C e. X ) -> ( B H C ) = ( C H B ) ) |
9 |
8
|
3adant3r1 |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B H C ) = ( C H B ) ) |
10 |
7 9
|
eqeq12d |
|- ( ( R e. CRingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H C ) = ( B H C ) <-> ( C H A ) = ( C H B ) ) ) |
11 |
5 10
|
sylan |
|- ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H C ) = ( B H C ) <-> ( C H A ) = ( C H B ) ) ) |
12 |
11
|
adantr |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ C =/= Z ) -> ( ( A H C ) = ( B H C ) <-> ( C H A ) = ( C H B ) ) ) |
13 |
|
3anrot |
|- ( ( C e. X /\ A e. X /\ B e. X ) <-> ( A e. X /\ B e. X /\ C e. X ) ) |
14 |
13
|
biimpri |
|- ( ( A e. X /\ B e. X /\ C e. X ) -> ( C e. X /\ A e. X /\ B e. X ) ) |
15 |
1 2 3 4
|
dmncan1 |
|- ( ( ( R e. Dmn /\ ( C e. X /\ A e. X /\ B e. X ) ) /\ C =/= Z ) -> ( ( C H A ) = ( C H B ) -> A = B ) ) |
16 |
14 15
|
sylanl2 |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ C =/= Z ) -> ( ( C H A ) = ( C H B ) -> A = B ) ) |
17 |
12 16
|
sylbid |
|- ( ( ( R e. Dmn /\ ( A e. X /\ B e. X /\ C e. X ) ) /\ C =/= Z ) -> ( ( A H C ) = ( B H C ) -> A = B ) ) |