Metamath Proof Explorer


Theorem dmncan2

Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses dmncan.1 G=1stR
dmncan.2 H=2ndR
dmncan.3 X=ranG
dmncan.4 Z=GIdG
Assertion dmncan2 RDmnAXBXCXCZAHC=BHCA=B

Proof

Step Hyp Ref Expression
1 dmncan.1 G=1stR
2 dmncan.2 H=2ndR
3 dmncan.3 X=ranG
4 dmncan.4 Z=GIdG
5 dmncrng RDmnRCRingOps
6 1 2 3 crngocom RCRingOpsAXCXAHC=CHA
7 6 3adant3r2 RCRingOpsAXBXCXAHC=CHA
8 1 2 3 crngocom RCRingOpsBXCXBHC=CHB
9 8 3adant3r1 RCRingOpsAXBXCXBHC=CHB
10 7 9 eqeq12d RCRingOpsAXBXCXAHC=BHCCHA=CHB
11 5 10 sylan RDmnAXBXCXAHC=BHCCHA=CHB
12 11 adantr RDmnAXBXCXCZAHC=BHCCHA=CHB
13 3anrot CXAXBXAXBXCX
14 13 biimpri AXBXCXCXAXBX
15 1 2 3 4 dmncan1 RDmnCXAXBXCZCHA=CHBA=B
16 14 15 sylanl2 RDmnAXBXCXCZCHA=CHBA=B
17 12 16 sylbid RDmnAXBXCXCZAHC=BHCA=B