Metamath Proof Explorer


Theorem dmncan2

Description: Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses dmncan.1 G = 1 st R
dmncan.2 H = 2 nd R
dmncan.3 X = ran G
dmncan.4 Z = GId G
Assertion dmncan2 R Dmn A X B X C X C Z A H C = B H C A = B

Proof

Step Hyp Ref Expression
1 dmncan.1 G = 1 st R
2 dmncan.2 H = 2 nd R
3 dmncan.3 X = ran G
4 dmncan.4 Z = GId G
5 dmncrng R Dmn R CRingOps
6 1 2 3 crngocom R CRingOps A X C X A H C = C H A
7 6 3adant3r2 R CRingOps A X B X C X A H C = C H A
8 1 2 3 crngocom R CRingOps B X C X B H C = C H B
9 8 3adant3r1 R CRingOps A X B X C X B H C = C H B
10 7 9 eqeq12d R CRingOps A X B X C X A H C = B H C C H A = C H B
11 5 10 sylan R Dmn A X B X C X A H C = B H C C H A = C H B
12 11 adantr R Dmn A X B X C X C Z A H C = B H C C H A = C H B
13 3anrot C X A X B X A X B X C X
14 13 biimpri A X B X C X C X A X B X
15 1 2 3 4 dmncan1 R Dmn C X A X B X C Z C H A = C H B A = B
16 14 15 sylanl2 R Dmn A X B X C X C Z C H A = C H B A = B
17 12 16 sylbid R Dmn A X B X C X C Z A H C = B H C A = B