| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmncan.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
dmncan.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
dmncan.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
dmncan.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
|
dmncrng |
⊢ ( 𝑅 ∈ Dmn → 𝑅 ∈ CRingOps ) |
| 6 |
1 2 3
|
crngocom |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐴 ) ) |
| 7 |
6
|
3adant3r2 |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐴 ) ) |
| 8 |
1 2 3
|
crngocom |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐵 ) ) |
| 9 |
8
|
3adant3r1 |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐵 ) ) |
| 10 |
7 9
|
eqeq12d |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) = ( 𝐵 𝐻 𝐶 ) ↔ ( 𝐶 𝐻 𝐴 ) = ( 𝐶 𝐻 𝐵 ) ) ) |
| 11 |
5 10
|
sylan |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) = ( 𝐵 𝐻 𝐶 ) ↔ ( 𝐶 𝐻 𝐴 ) = ( 𝐶 𝐻 𝐵 ) ) ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐶 ≠ 𝑍 ) → ( ( 𝐴 𝐻 𝐶 ) = ( 𝐵 𝐻 𝐶 ) ↔ ( 𝐶 𝐻 𝐴 ) = ( 𝐶 𝐻 𝐵 ) ) ) |
| 13 |
|
3anrot |
⊢ ( ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ↔ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) |
| 14 |
13
|
biimpri |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) |
| 15 |
1 2 3 4
|
dmncan1 |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) ∧ 𝐶 ≠ 𝑍 ) → ( ( 𝐶 𝐻 𝐴 ) = ( 𝐶 𝐻 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 16 |
14 15
|
sylanl2 |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐶 ≠ 𝑍 ) → ( ( 𝐶 𝐻 𝐴 ) = ( 𝐶 𝐻 𝐵 ) → 𝐴 = 𝐵 ) ) |
| 17 |
12 16
|
sylbid |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐶 ≠ 𝑍 ) → ( ( 𝐴 𝐻 𝐶 ) = ( 𝐵 𝐻 𝐶 ) → 𝐴 = 𝐵 ) ) |