Step |
Hyp |
Ref |
Expression |
1 |
|
dmncan.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
dmncan.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
dmncan.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
dmncan.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
|
dmnrngo |
⊢ ( 𝑅 ∈ Dmn → 𝑅 ∈ RingOps ) |
6 |
|
eqid |
⊢ ( /𝑔 ‘ 𝐺 ) = ( /𝑔 ‘ 𝐺 ) |
7 |
1 2 3 6
|
rngosubdi |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) ) |
10 |
9
|
eqeq1d |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 ↔ ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) = 𝑍 ) ) |
11 |
1
|
rngogrpo |
⊢ ( 𝑅 ∈ RingOps → 𝐺 ∈ GrpOp ) |
12 |
5 11
|
syl |
⊢ ( 𝑅 ∈ Dmn → 𝐺 ∈ GrpOp ) |
13 |
3 6
|
grpodivcl |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) |
14 |
13
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) |
15 |
12 14
|
sylan |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) |
16 |
15
|
adantlr |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) |
17 |
1 2 3 4
|
dmnnzd |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 ) ) → ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
18 |
17
|
3exp2 |
⊢ ( 𝑅 ∈ Dmn → ( 𝐴 ∈ 𝑋 → ( ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) ) ) |
19 |
18
|
imp31 |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) |
20 |
16 19
|
syldan |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) |
21 |
20
|
exp43 |
⊢ ( 𝑅 ∈ Dmn → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) ) ) ) |
22 |
21
|
3imp2 |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) |
23 |
|
neor |
⊢ ( ( 𝐴 = 𝑍 ∨ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ↔ ( 𝐴 ≠ 𝑍 → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
24 |
22 23
|
syl6ib |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐴 ≠ 𝑍 → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) |
25 |
24
|
com23 |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ≠ 𝑍 → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) ) |
26 |
25
|
imp |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( ( 𝐴 𝐻 ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) ) = 𝑍 → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
27 |
10 26
|
sylbird |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) = 𝑍 → ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
28 |
12
|
adantr |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → 𝐺 ∈ GrpOp ) |
29 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
30 |
29
|
3adant3r3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
31 |
5 30
|
sylan |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
32 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
33 |
32
|
3adant3r2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
34 |
5 33
|
sylan |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
35 |
3 4 6
|
grpoeqdivid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐻 𝐶 ) ↔ ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) = 𝑍 ) ) |
36 |
28 31 34 35
|
syl3anc |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐻 𝐶 ) ↔ ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) = 𝑍 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐻 𝐶 ) ↔ ( ( 𝐴 𝐻 𝐵 ) ( /𝑔 ‘ 𝐺 ) ( 𝐴 𝐻 𝐶 ) ) = 𝑍 ) ) |
38 |
3 4 6
|
grpoeqdivid |
⊢ ( ( 𝐺 ∈ GrpOp ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 = 𝐶 ↔ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
39 |
38
|
3expb |
⊢ ( ( 𝐺 ∈ GrpOp ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
40 |
12 39
|
sylan |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
41 |
40
|
3adantr1 |
⊢ ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 = 𝐶 ↔ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( 𝐵 = 𝐶 ↔ ( 𝐵 ( /𝑔 ‘ 𝐺 ) 𝐶 ) = 𝑍 ) ) |
43 |
27 37 42
|
3imtr4d |
⊢ ( ( ( 𝑅 ∈ Dmn ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) ∧ 𝐴 ≠ 𝑍 ) → ( ( 𝐴 𝐻 𝐵 ) = ( 𝐴 𝐻 𝐶 ) → 𝐵 = 𝐶 ) ) |