| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringsubdi.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
ringsubdi.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
ringsubdi.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
ringsubdi.4 |
⊢ 𝐷 = ( /𝑔 ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( inv ‘ 𝐺 ) = ( inv ‘ 𝐺 ) |
| 6 |
1 3 5 4
|
rngosub |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐷 𝐶 ) = ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 7 |
6
|
3adant3r1 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐷 𝐶 ) = ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 8 |
7
|
oveq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐷 𝐶 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 9 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 10 |
9
|
3adant3r3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ) |
| 11 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 12 |
11
|
3adant3r2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) |
| 13 |
10 12
|
jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) ) |
| 14 |
1 3 5 4
|
rngosub |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 15 |
14
|
3expb |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( ( 𝐴 𝐻 𝐵 ) ∈ 𝑋 ∧ ( 𝐴 𝐻 𝐶 ) ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 16 |
13 15
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 17 |
|
idd |
⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → 𝐴 ∈ 𝑋 ) ) |
| 18 |
|
idd |
⊢ ( 𝑅 ∈ RingOps → ( 𝐵 ∈ 𝑋 → 𝐵 ∈ 𝑋 ) ) |
| 19 |
1 3 5
|
rngonegcl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) |
| 20 |
19
|
ex |
⊢ ( 𝑅 ∈ RingOps → ( 𝐶 ∈ 𝑋 → ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) |
| 21 |
17 18 20
|
3anim123d |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) ) |
| 22 |
21
|
imp |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) |
| 23 |
1 2 3
|
rngodi |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 24 |
22 23
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 25 |
1 2 3 5
|
rngonegrmul |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 26 |
25
|
3adant3r2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( 𝐴 𝐻 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 28 |
24 27
|
eqtr4d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐴 𝐻 𝐶 ) ) ) ) |
| 29 |
16 28
|
eqtr4d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( 𝐵 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐶 ) ) ) ) |
| 30 |
8 29
|
eqtr4d |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐷 𝐶 ) ) = ( ( 𝐴 𝐻 𝐵 ) 𝐷 ( 𝐴 𝐻 𝐶 ) ) ) |