Metamath Proof Explorer


Theorem rngosubdi

Description: Ring multiplication distributes over subtraction. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringsubdi.1 G = 1 st R
ringsubdi.2 H = 2 nd R
ringsubdi.3 X = ran G
ringsubdi.4 D = / g G
Assertion rngosubdi R RingOps A X B X C X A H B D C = A H B D A H C

Proof

Step Hyp Ref Expression
1 ringsubdi.1 G = 1 st R
2 ringsubdi.2 H = 2 nd R
3 ringsubdi.3 X = ran G
4 ringsubdi.4 D = / g G
5 eqid inv G = inv G
6 1 3 5 4 rngosub R RingOps B X C X B D C = B G inv G C
7 6 3adant3r1 R RingOps A X B X C X B D C = B G inv G C
8 7 oveq2d R RingOps A X B X C X A H B D C = A H B G inv G C
9 1 2 3 rngocl R RingOps A X B X A H B X
10 9 3adant3r3 R RingOps A X B X C X A H B X
11 1 2 3 rngocl R RingOps A X C X A H C X
12 11 3adant3r2 R RingOps A X B X C X A H C X
13 10 12 jca R RingOps A X B X C X A H B X A H C X
14 1 3 5 4 rngosub R RingOps A H B X A H C X A H B D A H C = A H B G inv G A H C
15 14 3expb R RingOps A H B X A H C X A H B D A H C = A H B G inv G A H C
16 13 15 syldan R RingOps A X B X C X A H B D A H C = A H B G inv G A H C
17 idd R RingOps A X A X
18 idd R RingOps B X B X
19 1 3 5 rngonegcl R RingOps C X inv G C X
20 19 ex R RingOps C X inv G C X
21 17 18 20 3anim123d R RingOps A X B X C X A X B X inv G C X
22 21 imp R RingOps A X B X C X A X B X inv G C X
23 1 2 3 rngodi R RingOps A X B X inv G C X A H B G inv G C = A H B G A H inv G C
24 22 23 syldan R RingOps A X B X C X A H B G inv G C = A H B G A H inv G C
25 1 2 3 5 rngonegrmul R RingOps A X C X inv G A H C = A H inv G C
26 25 3adant3r2 R RingOps A X B X C X inv G A H C = A H inv G C
27 26 oveq2d R RingOps A X B X C X A H B G inv G A H C = A H B G A H inv G C
28 24 27 eqtr4d R RingOps A X B X C X A H B G inv G C = A H B G inv G A H C
29 16 28 eqtr4d R RingOps A X B X C X A H B D A H C = A H B G inv G C
30 8 29 eqtr4d R RingOps A X B X C X A H B D C = A H B D A H C