Metamath Proof Explorer


Theorem rngodi

Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G = 1 st R
ringi.2 H = 2 nd R
ringi.3 X = ran G
Assertion rngodi R RingOps A X B X C X A H B G C = A H B G A H C

Proof

Step Hyp Ref Expression
1 ringi.1 G = 1 st R
2 ringi.2 H = 2 nd R
3 ringi.3 X = ran G
4 1 2 3 rngoi R RingOps G AbelOp H : X × X X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
5 4 simprd R RingOps x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X x H y = y y H x = y
6 5 simpld R RingOps x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z
7 simp2 x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x H y G z = x H y G x H z
8 7 ralimi z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z z X x H y G z = x H y G x H z
9 8 2ralimi x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z x X y X z X x H y G z = x H y G x H z
10 oveq1 x = A x H y G z = A H y G z
11 oveq1 x = A x H y = A H y
12 oveq1 x = A x H z = A H z
13 11 12 oveq12d x = A x H y G x H z = A H y G A H z
14 10 13 eqeq12d x = A x H y G z = x H y G x H z A H y G z = A H y G A H z
15 oveq1 y = B y G z = B G z
16 15 oveq2d y = B A H y G z = A H B G z
17 oveq2 y = B A H y = A H B
18 17 oveq1d y = B A H y G A H z = A H B G A H z
19 16 18 eqeq12d y = B A H y G z = A H y G A H z A H B G z = A H B G A H z
20 oveq2 z = C B G z = B G C
21 20 oveq2d z = C A H B G z = A H B G C
22 oveq2 z = C A H z = A H C
23 22 oveq2d z = C A H B G A H z = A H B G A H C
24 21 23 eqeq12d z = C A H B G z = A H B G A H z A H B G C = A H B G A H C
25 14 19 24 rspc3v A X B X C X x X y X z X x H y G z = x H y G x H z A H B G C = A H B G A H C
26 9 25 syl5 A X B X C X x X y X z X x H y H z = x H y H z x H y G z = x H y G x H z x G y H z = x H z G y H z A H B G C = A H B G A H C
27 6 26 mpan9 R RingOps A X B X C X A H B G C = A H B G A H C