| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ringsubdi.1 |
|- G = ( 1st ` R ) |
| 2 |
|
ringsubdi.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
ringsubdi.3 |
|- X = ran G |
| 4 |
|
ringsubdi.4 |
|- D = ( /g ` G ) |
| 5 |
|
eqid |
|- ( inv ` G ) = ( inv ` G ) |
| 6 |
1 3 5 4
|
rngosub |
|- ( ( R e. RingOps /\ B e. X /\ C e. X ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 7 |
6
|
3adant3r1 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( B D C ) = ( B G ( ( inv ` G ) ` C ) ) ) |
| 8 |
7
|
oveq2d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( A H ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 9 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ B e. X ) -> ( A H B ) e. X ) |
| 10 |
9
|
3adant3r3 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H B ) e. X ) |
| 11 |
1 2 3
|
rngocl |
|- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( A H C ) e. X ) |
| 12 |
11
|
3adant3r2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H C ) e. X ) |
| 13 |
10 12
|
jca |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) e. X /\ ( A H C ) e. X ) ) |
| 14 |
1 3 5 4
|
rngosub |
|- ( ( R e. RingOps /\ ( A H B ) e. X /\ ( A H C ) e. X ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 15 |
14
|
3expb |
|- ( ( R e. RingOps /\ ( ( A H B ) e. X /\ ( A H C ) e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 16 |
13 15
|
syldan |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 17 |
|
idd |
|- ( R e. RingOps -> ( A e. X -> A e. X ) ) |
| 18 |
|
idd |
|- ( R e. RingOps -> ( B e. X -> B e. X ) ) |
| 19 |
1 3 5
|
rngonegcl |
|- ( ( R e. RingOps /\ C e. X ) -> ( ( inv ` G ) ` C ) e. X ) |
| 20 |
19
|
ex |
|- ( R e. RingOps -> ( C e. X -> ( ( inv ` G ) ` C ) e. X ) ) |
| 21 |
17 18 20
|
3anim123d |
|- ( R e. RingOps -> ( ( A e. X /\ B e. X /\ C e. X ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) ) |
| 22 |
21
|
imp |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) |
| 23 |
1 2 3
|
rngodi |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ ( ( inv ` G ) ` C ) e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
| 24 |
22 23
|
syldan |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
| 25 |
1 2 3 5
|
rngonegrmul |
|- ( ( R e. RingOps /\ A e. X /\ C e. X ) -> ( ( inv ` G ) ` ( A H C ) ) = ( A H ( ( inv ` G ) ` C ) ) ) |
| 26 |
25
|
3adant3r2 |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( inv ` G ) ` ( A H C ) ) = ( A H ( ( inv ` G ) ` C ) ) ) |
| 27 |
26
|
oveq2d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) = ( ( A H B ) G ( A H ( ( inv ` G ) ` C ) ) ) ) |
| 28 |
24 27
|
eqtr4d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B G ( ( inv ` G ) ` C ) ) ) = ( ( A H B ) G ( ( inv ` G ) ` ( A H C ) ) ) ) |
| 29 |
16 28
|
eqtr4d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( ( A H B ) D ( A H C ) ) = ( A H ( B G ( ( inv ` G ) ` C ) ) ) ) |
| 30 |
8 29
|
eqtr4d |
|- ( ( R e. RingOps /\ ( A e. X /\ B e. X /\ C e. X ) ) -> ( A H ( B D C ) ) = ( ( A H B ) D ( A H C ) ) ) |