| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ringsubdi.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | ringsubdi.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | ringsubdi.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | ringsubdi.4 | ⊢ 𝐷  =  (  /𝑔  ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( inv ‘ 𝐺 )  =  ( inv ‘ 𝐺 ) | 
						
							| 6 | 1 3 5 4 | rngosub | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋 )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 7 | 6 | 3adant3r3 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐷 𝐵 )  =  ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐻 𝐶 )  =  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) ) | 
						
							| 9 | 1 2 3 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴 𝐻 𝐶 )  ∈  𝑋 ) | 
						
							| 10 | 9 | 3adant3r2 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴 𝐻 𝐶 )  ∈  𝑋 ) | 
						
							| 11 | 1 2 3 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐵 𝐻 𝐶 )  ∈  𝑋 ) | 
						
							| 12 | 11 | 3adant3r1 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐵 𝐻 𝐶 )  ∈  𝑋 ) | 
						
							| 13 | 10 12 | jca | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐻 𝐶 )  ∈  𝑋  ∧  ( 𝐵 𝐻 𝐶 )  ∈  𝑋 ) ) | 
						
							| 14 | 1 3 5 4 | rngosub | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴 𝐻 𝐶 )  ∈  𝑋  ∧  ( 𝐵 𝐻 𝐶 )  ∈  𝑋 )  →  ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) | 
						
							| 15 | 14 | 3expb | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( ( 𝐴 𝐻 𝐶 )  ∈  𝑋  ∧  ( 𝐵 𝐻 𝐶 )  ∈  𝑋 ) )  →  ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) | 
						
							| 16 | 13 15 | syldan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) | 
						
							| 17 |  | idd | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝐴  ∈  𝑋  →  𝐴  ∈  𝑋 ) ) | 
						
							| 18 | 1 3 5 | rngonegcl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐵  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝐵  ∈  𝑋  →  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋 ) ) | 
						
							| 20 |  | idd | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝐶  ∈  𝑋  →  𝐶  ∈  𝑋 ) ) | 
						
							| 21 | 17 19 20 | 3anim123d | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( 𝐴  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) ) ) | 
						
							| 22 | 21 | imp | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( 𝐴  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) ) | 
						
							| 23 | 1 2 3 | rngodir | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  ( ( inv ‘ 𝐺 ) ‘ 𝐵 )  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) ) | 
						
							| 24 | 22 23 | syldan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) ) | 
						
							| 25 | 1 2 3 5 | rngoneglmul | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 )  →  ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) )  =  ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) | 
						
							| 26 | 25 | 3adant3r1 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) )  =  ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) 𝐻 𝐶 ) ) ) | 
						
							| 28 | 24 27 | eqtr4d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐺 ( ( inv ‘ 𝐺 ) ‘ ( 𝐵 𝐻 𝐶 ) ) ) ) | 
						
							| 29 | 16 28 | eqtr4d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) )  =  ( ( 𝐴 𝐺 ( ( inv ‘ 𝐺 ) ‘ 𝐵 ) ) 𝐻 𝐶 ) ) | 
						
							| 30 | 8 29 | eqtr4d | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐴  ∈  𝑋  ∧  𝐵  ∈  𝑋  ∧  𝐶  ∈  𝑋 ) )  →  ( ( 𝐴 𝐷 𝐵 ) 𝐻 𝐶 )  =  ( ( 𝐴 𝐻 𝐶 ) 𝐷 ( 𝐵 𝐻 𝐶 ) ) ) |