Step |
Hyp |
Ref |
Expression |
1 |
|
dmncan.1 |
|
2 |
|
dmncan.2 |
|
3 |
|
dmncan.3 |
|
4 |
|
dmncan.4 |
|
5 |
|
dmnrngo |
|
6 |
|
eqid |
|
7 |
1 2 3 6
|
rngosubdi |
|
8 |
5 7
|
sylan |
|
9 |
8
|
adantr |
|
10 |
9
|
eqeq1d |
|
11 |
1
|
rngogrpo |
|
12 |
5 11
|
syl |
|
13 |
3 6
|
grpodivcl |
|
14 |
13
|
3expb |
|
15 |
12 14
|
sylan |
|
16 |
15
|
adantlr |
|
17 |
1 2 3 4
|
dmnnzd |
|
18 |
17
|
3exp2 |
|
19 |
18
|
imp31 |
|
20 |
16 19
|
syldan |
|
21 |
20
|
exp43 |
|
22 |
21
|
3imp2 |
|
23 |
|
neor |
|
24 |
22 23
|
syl6ib |
|
25 |
24
|
com23 |
|
26 |
25
|
imp |
|
27 |
10 26
|
sylbird |
|
28 |
12
|
adantr |
|
29 |
1 2 3
|
rngocl |
|
30 |
29
|
3adant3r3 |
|
31 |
5 30
|
sylan |
|
32 |
1 2 3
|
rngocl |
|
33 |
32
|
3adant3r2 |
|
34 |
5 33
|
sylan |
|
35 |
3 4 6
|
grpoeqdivid |
|
36 |
28 31 34 35
|
syl3anc |
|
37 |
36
|
adantr |
|
38 |
3 4 6
|
grpoeqdivid |
|
39 |
38
|
3expb |
|
40 |
12 39
|
sylan |
|
41 |
40
|
3adantr1 |
|
42 |
41
|
adantr |
|
43 |
27 37 42
|
3imtr4d |
|