Metamath Proof Explorer


Theorem grpodivcl

Description: Closure of group division (or subtraction) operation. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses grpdivf.1 X=ranG
grpdivf.3 D=/gG
Assertion grpodivcl GGrpOpAXBXADBX

Proof

Step Hyp Ref Expression
1 grpdivf.1 X=ranG
2 grpdivf.3 D=/gG
3 1 2 grpodivf GGrpOpD:X×XX
4 fovcdm D:X×XXAXBXADBX
5 3 4 syl3an1 GGrpOpAXBXADBX