Metamath Proof Explorer


Theorem grpoeqdivid

Description: Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses grpeqdivid.1 X = ran G
grpeqdivid.2 U = GId G
grpeqdivid.3 D = / g G
Assertion grpoeqdivid G GrpOp A X B X A = B A D B = U

Proof

Step Hyp Ref Expression
1 grpeqdivid.1 X = ran G
2 grpeqdivid.2 U = GId G
3 grpeqdivid.3 D = / g G
4 1 3 2 grpodivid G GrpOp B X B D B = U
5 4 3adant2 G GrpOp A X B X B D B = U
6 oveq1 A = B A D B = B D B
7 6 eqeq1d A = B A D B = U B D B = U
8 5 7 syl5ibrcom G GrpOp A X B X A = B A D B = U
9 oveq1 A D B = U A D B G B = U G B
10 1 3 grponpcan G GrpOp A X B X A D B G B = A
11 1 2 grpolid G GrpOp B X U G B = B
12 11 3adant2 G GrpOp A X B X U G B = B
13 10 12 eqeq12d G GrpOp A X B X A D B G B = U G B A = B
14 9 13 syl5ib G GrpOp A X B X A D B = U A = B
15 8 14 impbid G GrpOp A X B X A = B A D B = U