Metamath Proof Explorer


Theorem crngocom

Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses crngocom.1 G=1stR
crngocom.2 H=2ndR
crngocom.3 X=ranG
Assertion crngocom RCRingOpsAXBXAHB=BHA

Proof

Step Hyp Ref Expression
1 crngocom.1 G=1stR
2 crngocom.2 H=2ndR
3 crngocom.3 X=ranG
4 1 2 3 iscrngo2 RCRingOpsRRingOpsxXyXxHy=yHx
5 4 simprbi RCRingOpsxXyXxHy=yHx
6 oveq1 x=AxHy=AHy
7 oveq2 x=AyHx=yHA
8 6 7 eqeq12d x=AxHy=yHxAHy=yHA
9 oveq2 y=BAHy=AHB
10 oveq1 y=ByHA=BHA
11 9 10 eqeq12d y=BAHy=yHAAHB=BHA
12 8 11 rspc2v AXBXxXyXxHy=yHxAHB=BHA
13 5 12 mpan9 RCRingOpsAXBXAHB=BHA
14 13 3impb RCRingOpsAXBXAHB=BHA