Metamath Proof Explorer


Theorem crngm23

Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses crngm.1 G=1stR
crngm.2 H=2ndR
crngm.3 X=ranG
Assertion crngm23 RCRingOpsAXBXCXAHBHC=AHCHB

Proof

Step Hyp Ref Expression
1 crngm.1 G=1stR
2 crngm.2 H=2ndR
3 crngm.3 X=ranG
4 1 2 3 crngocom RCRingOpsBXCXBHC=CHB
5 4 3adant3r1 RCRingOpsAXBXCXBHC=CHB
6 5 oveq2d RCRingOpsAXBXCXAHBHC=AHCHB
7 crngorngo RCRingOpsRRingOps
8 1 2 3 rngoass RRingOpsAXBXCXAHBHC=AHBHC
9 7 8 sylan RCRingOpsAXBXCXAHBHC=AHBHC
10 1 2 3 rngoass RRingOpsAXCXBXAHCHB=AHCHB
11 10 3exp2 RRingOpsAXCXBXAHCHB=AHCHB
12 11 com34 RRingOpsAXBXCXAHCHB=AHCHB
13 12 3imp2 RRingOpsAXBXCXAHCHB=AHCHB
14 7 13 sylan RCRingOpsAXBXCXAHCHB=AHCHB
15 6 9 14 3eqtr4d RCRingOpsAXBXCXAHBHC=AHCHB