Metamath Proof Explorer


Theorem rngoass

Description: Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngoass RRingOpsAXBXCXAHBHC=AHBHC

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 3 rngoi RRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
5 4 simprd RRingOpsxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
6 5 simpld RRingOpsxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
7 simp1 xHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxHyHz=xHyHz
8 7 ralimi zXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzzXxHyHz=xHyHz
9 8 2ralimi xXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXzXxHyHz=xHyHz
10 6 9 syl RRingOpsxXyXzXxHyHz=xHyHz
11 oveq1 x=AxHy=AHy
12 11 oveq1d x=AxHyHz=AHyHz
13 oveq1 x=AxHyHz=AHyHz
14 12 13 eqeq12d x=AxHyHz=xHyHzAHyHz=AHyHz
15 oveq2 y=BAHy=AHB
16 15 oveq1d y=BAHyHz=AHBHz
17 oveq1 y=ByHz=BHz
18 17 oveq2d y=BAHyHz=AHBHz
19 16 18 eqeq12d y=BAHyHz=AHyHzAHBHz=AHBHz
20 oveq2 z=CAHBHz=AHBHC
21 oveq2 z=CBHz=BHC
22 21 oveq2d z=CAHBHz=AHBHC
23 20 22 eqeq12d z=CAHBHz=AHBHzAHBHC=AHBHC
24 14 19 23 rspc3v AXBXCXxXyXzXxHyHz=xHyHzAHBHC=AHBHC
25 10 24 mpan9 RRingOpsAXBXCXAHBHC=AHBHC