| Step |
Hyp |
Ref |
Expression |
| 1 |
|
crngm.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
crngm.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
crngm.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
1 2 3
|
crngocom |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐵 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐵 ) ) |
| 5 |
4
|
3adant3r1 |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐵 𝐻 𝐶 ) = ( 𝐶 𝐻 𝐵 ) ) |
| 6 |
5
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( 𝐴 𝐻 ( 𝐵 𝐻 𝐶 ) ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 7 |
|
crngorngo |
⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) |
| 8 |
1 2 3
|
rngoass |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( 𝐴 𝐻 ( 𝐵 𝐻 𝐶 ) ) ) |
| 9 |
7 8
|
sylan |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( 𝐴 𝐻 ( 𝐵 𝐻 𝐶 ) ) ) |
| 10 |
1 2 3
|
rngoass |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 11 |
10
|
3exp2 |
⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) ) ) ) |
| 12 |
11
|
com34 |
⊢ ( 𝑅 ∈ RingOps → ( 𝐴 ∈ 𝑋 → ( 𝐵 ∈ 𝑋 → ( 𝐶 ∈ 𝑋 → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) ) ) ) |
| 13 |
12
|
3imp2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 14 |
7 13
|
sylan |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) = ( 𝐴 𝐻 ( 𝐶 𝐻 𝐵 ) ) ) |
| 15 |
6 9 14
|
3eqtr4d |
⊢ ( ( 𝑅 ∈ CRingOps ∧ ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋 ) ) → ( ( 𝐴 𝐻 𝐵 ) 𝐻 𝐶 ) = ( ( 𝐴 𝐻 𝐶 ) 𝐻 𝐵 ) ) |