Metamath Proof Explorer


Theorem crngm4

Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses crngm.1 G=1stR
crngm.2 H=2ndR
crngm.3 X=ranG
Assertion crngm4 RCRingOpsAXBXCXDXAHBHCHD=AHCHBHD

Proof

Step Hyp Ref Expression
1 crngm.1 G=1stR
2 crngm.2 H=2ndR
3 crngm.3 X=ranG
4 df-3an AXBXCXAXBXCX
5 1 2 3 crngm23 RCRingOpsAXBXCXAHBHC=AHCHB
6 4 5 sylan2br RCRingOpsAXBXCXAHBHC=AHCHB
7 6 adantrrr RCRingOpsAXBXCXDXAHBHC=AHCHB
8 7 oveq1d RCRingOpsAXBXCXDXAHBHCHD=AHCHBHD
9 crngorngo RCRingOpsRRingOps
10 1 2 3 rngocl RRingOpsAXBXAHBX
11 10 3expb RRingOpsAXBXAHBX
12 11 adantrr RRingOpsAXBXCXDXAHBX
13 simprrl RRingOpsAXBXCXDXCX
14 simprrr RRingOpsAXBXCXDXDX
15 12 13 14 3jca RRingOpsAXBXCXDXAHBXCXDX
16 1 2 3 rngoass RRingOpsAHBXCXDXAHBHCHD=AHBHCHD
17 15 16 syldan RRingOpsAXBXCXDXAHBHCHD=AHBHCHD
18 9 17 sylan RCRingOpsAXBXCXDXAHBHCHD=AHBHCHD
19 1 2 3 rngocl RRingOpsAXCXAHCX
20 19 3expb RRingOpsAXCXAHCX
21 20 adantrlr RRingOpsAXBXCXAHCX
22 21 adantrrr RRingOpsAXBXCXDXAHCX
23 simprlr RRingOpsAXBXCXDXBX
24 22 23 14 3jca RRingOpsAXBXCXDXAHCXBXDX
25 1 2 3 rngoass RRingOpsAHCXBXDXAHCHBHD=AHCHBHD
26 24 25 syldan RRingOpsAXBXCXDXAHCHBHD=AHCHBHD
27 9 26 sylan RCRingOpsAXBXCXDXAHCHBHD=AHCHBHD
28 8 18 27 3eqtr3d RCRingOpsAXBXCXDXAHBHCHD=AHCHBHD
29 28 3impb RCRingOpsAXBXCXDXAHBHCHD=AHCHBHD