Metamath Proof Explorer


Theorem crngm4

Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses crngm.1 G = 1 st R
crngm.2 H = 2 nd R
crngm.3 X = ran G
Assertion crngm4 R CRingOps A X B X C X D X A H B H C H D = A H C H B H D

Proof

Step Hyp Ref Expression
1 crngm.1 G = 1 st R
2 crngm.2 H = 2 nd R
3 crngm.3 X = ran G
4 df-3an A X B X C X A X B X C X
5 1 2 3 crngm23 R CRingOps A X B X C X A H B H C = A H C H B
6 4 5 sylan2br R CRingOps A X B X C X A H B H C = A H C H B
7 6 adantrrr R CRingOps A X B X C X D X A H B H C = A H C H B
8 7 oveq1d R CRingOps A X B X C X D X A H B H C H D = A H C H B H D
9 crngorngo R CRingOps R RingOps
10 1 2 3 rngocl R RingOps A X B X A H B X
11 10 3expb R RingOps A X B X A H B X
12 11 adantrr R RingOps A X B X C X D X A H B X
13 simprrl R RingOps A X B X C X D X C X
14 simprrr R RingOps A X B X C X D X D X
15 12 13 14 3jca R RingOps A X B X C X D X A H B X C X D X
16 1 2 3 rngoass R RingOps A H B X C X D X A H B H C H D = A H B H C H D
17 15 16 syldan R RingOps A X B X C X D X A H B H C H D = A H B H C H D
18 9 17 sylan R CRingOps A X B X C X D X A H B H C H D = A H B H C H D
19 1 2 3 rngocl R RingOps A X C X A H C X
20 19 3expb R RingOps A X C X A H C X
21 20 adantrlr R RingOps A X B X C X A H C X
22 21 adantrrr R RingOps A X B X C X D X A H C X
23 simprlr R RingOps A X B X C X D X B X
24 22 23 14 3jca R RingOps A X B X C X D X A H C X B X D X
25 1 2 3 rngoass R RingOps A H C X B X D X A H C H B H D = A H C H B H D
26 24 25 syldan R RingOps A X B X C X D X A H C H B H D = A H C H B H D
27 9 26 sylan R CRingOps A X B X C X D X A H C H B H D = A H C H B H D
28 8 18 27 3eqtr3d R CRingOps A X B X C X D X A H B H C H D = A H C H B H D
29 28 3impb R CRingOps A X B X C X D X A H B H C H D = A H C H B H D