Metamath Proof Explorer


Theorem fldcrngo

Description: A field is a commutative ring. (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Assertion fldcrngo KFldKCRingOps

Proof

Step Hyp Ref Expression
1 eqid 1stK=1stK
2 eqid 2ndK=2ndK
3 eqid ran1stK=ran1stK
4 eqid GId1stK=GId1stK
5 1 2 3 4 drngoi KDivRingOpsKRingOps2ndKran1stKGId1stK×ran1stKGId1stKGrpOp
6 5 simpld KDivRingOpsKRingOps
7 6 anim1i KDivRingOpsKCom2KRingOpsKCom2
8 df-fld Fld=DivRingOpsCom2
9 8 elin2 KFldKDivRingOpsKCom2
10 iscrngo KCRingOpsKRingOpsKCom2
11 7 9 10 3imtr4i KFldKCRingOps