| Step |
Hyp |
Ref |
Expression |
| 1 |
|
uznzr.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
uznzr.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
uznzr.3 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 4 |
|
uznzr.4 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
| 5 |
|
uznzr.5 |
⊢ 𝑋 = ran 𝐺 |
| 6 |
1 5 3
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → 𝑍 ∈ 𝑋 ) |
| 7 |
|
en1eqsn |
⊢ ( ( 𝑍 ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → 𝑋 = { 𝑍 } ) |
| 8 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
| 9 |
8 2 4
|
rngo1cl |
⊢ ( 𝑅 ∈ RingOps → 𝑈 ∈ ran 𝐺 ) |
| 10 |
|
eleq2 |
⊢ ( 𝑋 = { 𝑍 } → ( 𝑈 ∈ 𝑋 ↔ 𝑈 ∈ { 𝑍 } ) ) |
| 11 |
10
|
biimpd |
⊢ ( 𝑋 = { 𝑍 } → ( 𝑈 ∈ 𝑋 → 𝑈 ∈ { 𝑍 } ) ) |
| 12 |
|
elsni |
⊢ ( 𝑈 ∈ { 𝑍 } → 𝑈 = 𝑍 ) |
| 13 |
11 12
|
syl6com |
⊢ ( 𝑈 ∈ 𝑋 → ( 𝑋 = { 𝑍 } → 𝑈 = 𝑍 ) ) |
| 14 |
5
|
eqcomi |
⊢ ran 𝐺 = 𝑋 |
| 15 |
13 14
|
eleq2s |
⊢ ( 𝑈 ∈ ran 𝐺 → ( 𝑋 = { 𝑍 } → 𝑈 = 𝑍 ) ) |
| 16 |
9 15
|
syl |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 = { 𝑍 } → 𝑈 = 𝑍 ) ) |
| 17 |
7 16
|
syl5com |
⊢ ( ( 𝑍 ∈ 𝑋 ∧ 𝑋 ≈ 1o ) → ( 𝑅 ∈ RingOps → 𝑈 = 𝑍 ) ) |
| 18 |
17
|
ex |
⊢ ( 𝑍 ∈ 𝑋 → ( 𝑋 ≈ 1o → ( 𝑅 ∈ RingOps → 𝑈 = 𝑍 ) ) ) |
| 19 |
18
|
com23 |
⊢ ( 𝑍 ∈ 𝑋 → ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o → 𝑈 = 𝑍 ) ) ) |
| 20 |
6 19
|
mpcom |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o → 𝑈 = 𝑍 ) ) |
| 21 |
1 5
|
rngone0 |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ≠ ∅ ) |
| 22 |
|
oveq2 |
⊢ ( 𝑈 = 𝑍 → ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) |
| 23 |
22
|
ralrimivw |
⊢ ( 𝑈 = 𝑍 → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) |
| 24 |
3 5 1 2
|
rngorz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑍 ) = 𝑍 ) |
| 25 |
24
|
ralrimiva |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 ) |
| 26 |
5 8
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
| 27 |
2 26 4
|
rngoridm |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝐻 𝑈 ) = 𝑥 ) |
| 28 |
27
|
ralrimiva |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 ) |
| 29 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ↔ ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ) |
| 30 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) ↔ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 ) ) |
| 31 |
|
eqtr |
⊢ ( ( 𝑥 = ( 𝑥 𝐻 𝑈 ) ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → 𝑥 = ( 𝑥 𝐻 𝑍 ) ) |
| 32 |
|
eqtr |
⊢ ( ( 𝑥 = ( 𝑥 𝐻 𝑍 ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → 𝑥 = 𝑍 ) |
| 33 |
32
|
ex |
⊢ ( 𝑥 = ( 𝑥 𝐻 𝑍 ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) |
| 34 |
31 33
|
syl |
⊢ ( ( 𝑥 = ( 𝑥 𝐻 𝑈 ) ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) |
| 35 |
34
|
ex |
⊢ ( 𝑥 = ( 𝑥 𝐻 𝑈 ) → ( ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) ) |
| 36 |
35
|
eqcoms |
⊢ ( ( 𝑥 𝐻 𝑈 ) = 𝑥 → ( ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( ( 𝑥 𝐻 𝑍 ) = 𝑍 → 𝑥 = 𝑍 ) ) ) |
| 37 |
36
|
imp31 |
⊢ ( ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → 𝑥 = 𝑍 ) |
| 38 |
37
|
ralimi |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 ) |
| 39 |
|
eqsn |
⊢ ( 𝑋 ≠ ∅ → ( 𝑋 = { 𝑍 } ↔ ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 ) ) |
| 40 |
|
ensn1g |
⊢ ( 𝑍 ∈ 𝑋 → { 𝑍 } ≈ 1o ) |
| 41 |
6 40
|
syl |
⊢ ( 𝑅 ∈ RingOps → { 𝑍 } ≈ 1o ) |
| 42 |
|
breq1 |
⊢ ( 𝑋 = { 𝑍 } → ( 𝑋 ≈ 1o ↔ { 𝑍 } ≈ 1o ) ) |
| 43 |
41 42
|
imbitrrid |
⊢ ( 𝑋 = { 𝑍 } → ( 𝑅 ∈ RingOps → 𝑋 ≈ 1o ) ) |
| 44 |
39 43
|
biimtrrdi |
⊢ ( 𝑋 ≠ ∅ → ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → ( 𝑅 ∈ RingOps → 𝑋 ≈ 1o ) ) ) |
| 45 |
44
|
com3l |
⊢ ( ∀ 𝑥 ∈ 𝑋 𝑥 = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 46 |
38 45
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 47 |
30 46
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 ) → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 48 |
47
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) |
| 49 |
29 48
|
sylbir |
⊢ ( ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) |
| 50 |
49
|
ex |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) ) |
| 51 |
50
|
com24 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = 𝑥 → ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) ) |
| 52 |
28 51
|
mpcom |
⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑍 ) = 𝑍 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) ) |
| 53 |
25 52
|
mpd |
⊢ ( 𝑅 ∈ RingOps → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 𝐻 𝑈 ) = ( 𝑥 𝐻 𝑍 ) → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 54 |
23 53
|
syl5com |
⊢ ( 𝑈 = 𝑍 → ( 𝑅 ∈ RingOps → ( 𝑋 ≠ ∅ → 𝑋 ≈ 1o ) ) ) |
| 55 |
54
|
com13 |
⊢ ( 𝑋 ≠ ∅ → ( 𝑅 ∈ RingOps → ( 𝑈 = 𝑍 → 𝑋 ≈ 1o ) ) ) |
| 56 |
21 55
|
mpcom |
⊢ ( 𝑅 ∈ RingOps → ( 𝑈 = 𝑍 → 𝑋 ≈ 1o ) ) |
| 57 |
20 56
|
impbid |
⊢ ( 𝑅 ∈ RingOps → ( 𝑋 ≈ 1o ↔ 𝑈 = 𝑍 ) ) |