Metamath Proof Explorer


Theorem igenss

Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1 G=1stR
igenval.2 X=ranG
Assertion igenss RRingOpsSXSRIdlGenS

Proof

Step Hyp Ref Expression
1 igenval.1 G=1stR
2 igenval.2 X=ranG
3 ssintub SjIdlR|Sj
4 1 2 igenval RRingOpsSXRIdlGenS=jIdlR|Sj
5 3 4 sseqtrrid RRingOpsSXSRIdlGenS