Metamath Proof Explorer


Theorem igenss

Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1 G = 1 st R
igenval.2 X = ran G
Assertion igenss R RingOps S X S R IdlGen S

Proof

Step Hyp Ref Expression
1 igenval.1 G = 1 st R
2 igenval.2 X = ran G
3 ssintub S j Idl R | S j
4 1 2 igenval R RingOps S X R IdlGen S = j Idl R | S j
5 3 4 sseqtrrid R RingOps S X S R IdlGen S