Metamath Proof Explorer


Theorem igenidl

Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1 G=1stR
igenval.2 X=ranG
Assertion igenidl RRingOpsSXRIdlGenSIdlR

Proof

Step Hyp Ref Expression
1 igenval.1 G=1stR
2 igenval.2 X=ranG
3 1 2 igenval RRingOpsSXRIdlGenS=jIdlR|Sj
4 1 2 rngoidl RRingOpsXIdlR
5 sseq2 j=XSjSX
6 5 rspcev XIdlRSXjIdlRSj
7 4 6 sylan RRingOpsSXjIdlRSj
8 rabn0 jIdlR|SjjIdlRSj
9 7 8 sylibr RRingOpsSXjIdlR|Sj
10 ssrab2 jIdlR|SjIdlR
11 intidl RRingOpsjIdlR|SjjIdlR|SjIdlRjIdlR|SjIdlR
12 10 11 mp3an3 RRingOpsjIdlR|SjjIdlR|SjIdlR
13 9 12 syldan RRingOpsSXjIdlR|SjIdlR
14 3 13 eqeltrd RRingOpsSXRIdlGenSIdlR