Metamath Proof Explorer


Theorem igenmin

Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenmin R RingOps I Idl R S I R IdlGen S I

Proof

Step Hyp Ref Expression
1 eqid 1 st R = 1 st R
2 eqid ran 1 st R = ran 1 st R
3 1 2 idlss R RingOps I Idl R I ran 1 st R
4 sstr S I I ran 1 st R S ran 1 st R
5 4 ancoms I ran 1 st R S I S ran 1 st R
6 1 2 igenval R RingOps S ran 1 st R R IdlGen S = j Idl R | S j
7 5 6 sylan2 R RingOps I ran 1 st R S I R IdlGen S = j Idl R | S j
8 7 anassrs R RingOps I ran 1 st R S I R IdlGen S = j Idl R | S j
9 3 8 syldanl R RingOps I Idl R S I R IdlGen S = j Idl R | S j
10 9 3impa R RingOps I Idl R S I R IdlGen S = j Idl R | S j
11 sseq2 j = I S j S I
12 11 intminss I Idl R S I j Idl R | S j I
13 12 3adant1 R RingOps I Idl R S I j Idl R | S j I
14 10 13 eqsstrd R RingOps I Idl R S I R IdlGen S I