Metamath Proof Explorer


Theorem igenmin

Description: The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenmin ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆𝐼 ) → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝐼 )

Proof

Step Hyp Ref Expression
1 eqid ( 1st𝑅 ) = ( 1st𝑅 )
2 eqid ran ( 1st𝑅 ) = ran ( 1st𝑅 )
3 1 2 idlss ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → 𝐼 ⊆ ran ( 1st𝑅 ) )
4 sstr ( ( 𝑆𝐼𝐼 ⊆ ran ( 1st𝑅 ) ) → 𝑆 ⊆ ran ( 1st𝑅 ) )
5 4 ancoms ( ( 𝐼 ⊆ ran ( 1st𝑅 ) ∧ 𝑆𝐼 ) → 𝑆 ⊆ ran ( 1st𝑅 ) )
6 1 2 igenval ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ ran ( 1st𝑅 ) ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
7 5 6 sylan2 ( ( 𝑅 ∈ RingOps ∧ ( 𝐼 ⊆ ran ( 1st𝑅 ) ∧ 𝑆𝐼 ) ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
8 7 anassrs ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran ( 1st𝑅 ) ) ∧ 𝑆𝐼 ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
9 3 8 syldanl ( ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝑆𝐼 ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
10 9 3impa ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆𝐼 ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
11 sseq2 ( 𝑗 = 𝐼 → ( 𝑆𝑗𝑆𝐼 ) )
12 11 intminss ( ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆𝐼 ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ⊆ 𝐼 )
13 12 3adant1 ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆𝐼 ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ⊆ 𝐼 )
14 10 13 eqsstrd ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆𝐼 ) → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝐼 )