Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
2 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
3 |
1 2
|
idlss |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran ( 1st ` R ) ) |
4 |
|
sstr |
|- ( ( S C_ I /\ I C_ ran ( 1st ` R ) ) -> S C_ ran ( 1st ` R ) ) |
5 |
4
|
ancoms |
|- ( ( I C_ ran ( 1st ` R ) /\ S C_ I ) -> S C_ ran ( 1st ` R ) ) |
6 |
1 2
|
igenval |
|- ( ( R e. RingOps /\ S C_ ran ( 1st ` R ) ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
7 |
5 6
|
sylan2 |
|- ( ( R e. RingOps /\ ( I C_ ran ( 1st ` R ) /\ S C_ I ) ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
8 |
7
|
anassrs |
|- ( ( ( R e. RingOps /\ I C_ ran ( 1st ` R ) ) /\ S C_ I ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
9 |
3 8
|
syldanl |
|- ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ S C_ I ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
10 |
9
|
3impa |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ S C_ I ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
11 |
|
sseq2 |
|- ( j = I -> ( S C_ j <-> S C_ I ) ) |
12 |
11
|
intminss |
|- ( ( I e. ( Idl ` R ) /\ S C_ I ) -> |^| { j e. ( Idl ` R ) | S C_ j } C_ I ) |
13 |
12
|
3adant1 |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ S C_ I ) -> |^| { j e. ( Idl ` R ) | S C_ j } C_ I ) |
14 |
10 13
|
eqsstrd |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ S C_ I ) -> ( R IdlGen S ) C_ I ) |