| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( 1st ` R ) = ( 1st ` R ) | 
						
							| 2 |  | eqid |  |-  ran ( 1st ` R ) = ran ( 1st ` R ) | 
						
							| 3 | 1 2 | idlss |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran ( 1st ` R ) ) | 
						
							| 4 |  | sstr |  |-  ( ( S C_ I /\ I C_ ran ( 1st ` R ) ) -> S C_ ran ( 1st ` R ) ) | 
						
							| 5 | 4 | ancoms |  |-  ( ( I C_ ran ( 1st ` R ) /\ S C_ I ) -> S C_ ran ( 1st ` R ) ) | 
						
							| 6 | 1 2 | igenval |  |-  ( ( R e. RingOps /\ S C_ ran ( 1st ` R ) ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) | 
						
							| 7 | 5 6 | sylan2 |  |-  ( ( R e. RingOps /\ ( I C_ ran ( 1st ` R ) /\ S C_ I ) ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) | 
						
							| 8 | 7 | anassrs |  |-  ( ( ( R e. RingOps /\ I C_ ran ( 1st ` R ) ) /\ S C_ I ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) | 
						
							| 9 | 3 8 | syldanl |  |-  ( ( ( R e. RingOps /\ I e. ( Idl ` R ) ) /\ S C_ I ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) | 
						
							| 10 | 9 | 3impa |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ S C_ I ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) | 
						
							| 11 |  | sseq2 |  |-  ( j = I -> ( S C_ j <-> S C_ I ) ) | 
						
							| 12 | 11 | intminss |  |-  ( ( I e. ( Idl ` R ) /\ S C_ I ) -> |^| { j e. ( Idl ` R ) | S C_ j } C_ I ) | 
						
							| 13 | 12 | 3adant1 |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ S C_ I ) -> |^| { j e. ( Idl ` R ) | S C_ j } C_ I ) | 
						
							| 14 | 10 13 | eqsstrd |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) /\ S C_ I ) -> ( R IdlGen S ) C_ I ) |