Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( 1st ` R ) = ( 1st ` R ) |
2 |
|
eqid |
|- ran ( 1st ` R ) = ran ( 1st ` R ) |
3 |
1 2
|
idlss |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran ( 1st ` R ) ) |
4 |
1 2
|
igenval |
|- ( ( R e. RingOps /\ I C_ ran ( 1st ` R ) ) -> ( R IdlGen I ) = |^| { j e. ( Idl ` R ) | I C_ j } ) |
5 |
3 4
|
syldan |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = |^| { j e. ( Idl ` R ) | I C_ j } ) |
6 |
|
intmin |
|- ( I e. ( Idl ` R ) -> |^| { j e. ( Idl ` R ) | I C_ j } = I ) |
7 |
6
|
adantl |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> |^| { j e. ( Idl ` R ) | I C_ j } = I ) |
8 |
5 7
|
eqtrd |
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = I ) |