Metamath Proof Explorer


Theorem igenidl2

Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenidl2
|- ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = I )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( 1st ` R ) = ( 1st ` R )
2 eqid
 |-  ran ( 1st ` R ) = ran ( 1st ` R )
3 1 2 idlss
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran ( 1st ` R ) )
4 1 2 igenval
 |-  ( ( R e. RingOps /\ I C_ ran ( 1st ` R ) ) -> ( R IdlGen I ) = |^| { j e. ( Idl ` R ) | I C_ j } )
5 3 4 syldan
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = |^| { j e. ( Idl ` R ) | I C_ j } )
6 intmin
 |-  ( I e. ( Idl ` R ) -> |^| { j e. ( Idl ` R ) | I C_ j } = I )
7 6 adantl
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> |^| { j e. ( Idl ` R ) | I C_ j } = I )
8 5 7 eqtrd
 |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = I )