| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( 1st ` R ) = ( 1st ` R ) | 
						
							| 2 |  | eqid |  |-  ran ( 1st ` R ) = ran ( 1st ` R ) | 
						
							| 3 | 1 2 | idlss |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> I C_ ran ( 1st ` R ) ) | 
						
							| 4 | 1 2 | igenval |  |-  ( ( R e. RingOps /\ I C_ ran ( 1st ` R ) ) -> ( R IdlGen I ) = |^| { j e. ( Idl ` R ) | I C_ j } ) | 
						
							| 5 | 3 4 | syldan |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = |^| { j e. ( Idl ` R ) | I C_ j } ) | 
						
							| 6 |  | intmin |  |-  ( I e. ( Idl ` R ) -> |^| { j e. ( Idl ` R ) | I C_ j } = I ) | 
						
							| 7 | 6 | adantl |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> |^| { j e. ( Idl ` R ) | I C_ j } = I ) | 
						
							| 8 | 5 7 | eqtrd |  |-  ( ( R e. RingOps /\ I e. ( Idl ` R ) ) -> ( R IdlGen I ) = I ) |