Metamath Proof Explorer


Theorem igenidl2

Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenidl2 RRingOpsIIdlRRIdlGenI=I

Proof

Step Hyp Ref Expression
1 eqid 1stR=1stR
2 eqid ran1stR=ran1stR
3 1 2 idlss RRingOpsIIdlRIran1stR
4 1 2 igenval RRingOpsIran1stRRIdlGenI=jIdlR|Ij
5 3 4 syldan RRingOpsIIdlRRIdlGenI=jIdlR|Ij
6 intmin IIdlRjIdlR|Ij=I
7 6 adantl RRingOpsIIdlRjIdlR|Ij=I
8 5 7 eqtrd RRingOpsIIdlRRIdlGenI=I