Metamath Proof Explorer


Theorem igenidl2

Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenidl2 R RingOps I Idl R R IdlGen I = I

Proof

Step Hyp Ref Expression
1 eqid 1 st R = 1 st R
2 eqid ran 1 st R = ran 1 st R
3 1 2 idlss R RingOps I Idl R I ran 1 st R
4 1 2 igenval R RingOps I ran 1 st R R IdlGen I = j Idl R | I j
5 3 4 syldan R RingOps I Idl R R IdlGen I = j Idl R | I j
6 intmin I Idl R j Idl R | I j = I
7 6 adantl R RingOps I Idl R j Idl R | I j = I
8 5 7 eqtrd R RingOps I Idl R R IdlGen I = I