Metamath Proof Explorer


Theorem igenval2

Description: The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval2.1 G = 1 st R
igenval2.2 X = ran G
Assertion igenval2 R RingOps S X R IdlGen S = I I Idl R S I j Idl R S j I j

Proof

Step Hyp Ref Expression
1 igenval2.1 G = 1 st R
2 igenval2.2 X = ran G
3 1 2 igenidl R RingOps S X R IdlGen S Idl R
4 1 2 igenss R RingOps S X S R IdlGen S
5 igenmin R RingOps j Idl R S j R IdlGen S j
6 5 3expia R RingOps j Idl R S j R IdlGen S j
7 6 ralrimiva R RingOps j Idl R S j R IdlGen S j
8 7 adantr R RingOps S X j Idl R S j R IdlGen S j
9 3 4 8 3jca R RingOps S X R IdlGen S Idl R S R IdlGen S j Idl R S j R IdlGen S j
10 eleq1 R IdlGen S = I R IdlGen S Idl R I Idl R
11 sseq2 R IdlGen S = I S R IdlGen S S I
12 sseq1 R IdlGen S = I R IdlGen S j I j
13 12 imbi2d R IdlGen S = I S j R IdlGen S j S j I j
14 13 ralbidv R IdlGen S = I j Idl R S j R IdlGen S j j Idl R S j I j
15 10 11 14 3anbi123d R IdlGen S = I R IdlGen S Idl R S R IdlGen S j Idl R S j R IdlGen S j I Idl R S I j Idl R S j I j
16 9 15 syl5ibcom R RingOps S X R IdlGen S = I I Idl R S I j Idl R S j I j
17 igenmin R RingOps I Idl R S I R IdlGen S I
18 17 3adant3r3 R RingOps I Idl R S I j Idl R S j I j R IdlGen S I
19 18 adantlr R RingOps S X I Idl R S I j Idl R S j I j R IdlGen S I
20 ssint I i Idl R | S i j i Idl R | S i I j
21 sseq2 i = j S i S j
22 21 ralrab j i Idl R | S i I j j Idl R S j I j
23 20 22 sylbbr j Idl R S j I j I i Idl R | S i
24 23 3ad2ant3 I Idl R S I j Idl R S j I j I i Idl R | S i
25 24 adantl R RingOps S X I Idl R S I j Idl R S j I j I i Idl R | S i
26 1 2 igenval R RingOps S X R IdlGen S = i Idl R | S i
27 26 adantr R RingOps S X I Idl R S I j Idl R S j I j R IdlGen S = i Idl R | S i
28 25 27 sseqtrrd R RingOps S X I Idl R S I j Idl R S j I j I R IdlGen S
29 19 28 eqssd R RingOps S X I Idl R S I j Idl R S j I j R IdlGen S = I
30 29 ex R RingOps S X I Idl R S I j Idl R S j I j R IdlGen S = I
31 16 30 impbid R RingOps S X R IdlGen S = I I Idl R S I j Idl R S j I j