| Step |
Hyp |
Ref |
Expression |
| 1 |
|
igenval2.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
igenval2.2 |
⊢ 𝑋 = ran 𝐺 |
| 3 |
1 2
|
igenidl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) ) |
| 4 |
1 2
|
igenss |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) ) |
| 5 |
|
igenmin |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝑗 ) → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) |
| 6 |
5
|
3expia |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝑅 ∈ RingOps → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ) |
| 9 |
3 4 8
|
3jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ) ) |
| 10 |
|
eleq1 |
⊢ ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) ↔ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) ) |
| 11 |
|
sseq2 |
⊢ ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) ↔ 𝑆 ⊆ 𝐼 ) ) |
| 12 |
|
sseq1 |
⊢ ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ↔ 𝐼 ⊆ 𝑗 ) ) |
| 13 |
12
|
imbi2d |
⊢ ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ↔ ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) |
| 14 |
13
|
ralbidv |
⊢ ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ↔ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) |
| 15 |
10 11 14
|
3anbi123d |
⊢ ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( ( ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝑗 ) ) ↔ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) ) |
| 16 |
9 15
|
syl5ibcom |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 → ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) ) |
| 17 |
|
igenmin |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ) → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝐼 ) |
| 18 |
17
|
3adant3r3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝐼 ) |
| 19 |
18
|
adantlr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) → ( 𝑅 IdlGen 𝑆 ) ⊆ 𝐼 ) |
| 20 |
|
ssint |
⊢ ( 𝐼 ⊆ ∩ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } ↔ ∀ 𝑗 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } 𝐼 ⊆ 𝑗 ) |
| 21 |
|
sseq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑆 ⊆ 𝑖 ↔ 𝑆 ⊆ 𝑗 ) ) |
| 22 |
21
|
ralrab |
⊢ ( ∀ 𝑗 ∈ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } 𝐼 ⊆ 𝑗 ↔ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) |
| 23 |
20 22
|
sylbbr |
⊢ ( ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) → 𝐼 ⊆ ∩ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } ) |
| 24 |
23
|
3ad2ant3 |
⊢ ( ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) → 𝐼 ⊆ ∩ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } ) |
| 25 |
24
|
adantl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) → 𝐼 ⊆ ∩ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } ) |
| 26 |
1 2
|
igenval |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑅 IdlGen 𝑆 ) = ∩ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } ) |
| 27 |
26
|
adantr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) → ( 𝑅 IdlGen 𝑆 ) = ∩ { 𝑖 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑖 } ) |
| 28 |
25 27
|
sseqtrrd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) → 𝐼 ⊆ ( 𝑅 IdlGen 𝑆 ) ) |
| 29 |
19 28
|
eqssd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) → ( 𝑅 IdlGen 𝑆 ) = 𝐼 ) |
| 30 |
29
|
ex |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) → ( 𝑅 IdlGen 𝑆 ) = 𝐼 ) ) |
| 31 |
16 30
|
impbid |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑅 IdlGen 𝑆 ) = 𝐼 ↔ ( 𝐼 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝐼 ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( 𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗 ) ) ) ) |