| Step | Hyp | Ref | Expression | 
						
							| 1 |  | igenval2.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | igenval2.2 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 3 | 1 2 | igenidl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑅  IdlGen  𝑆 )  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 4 | 1 2 | igenss | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  𝑆  ⊆  ( 𝑅  IdlGen  𝑆 ) ) | 
						
							| 5 |  | igenmin | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝑗 )  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 ) | 
						
							| 6 | 5 | 3expia | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  →  ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 ) ) | 
						
							| 7 | 6 | ralrimiva | ⊢ ( 𝑅  ∈  RingOps  →  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 ) ) | 
						
							| 9 | 3 4 8 | 3jca | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑅  IdlGen  𝑆 )  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  ( 𝑅  IdlGen  𝑆 )  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 ) ) ) | 
						
							| 10 |  | eleq1 | ⊢ ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( ( 𝑅  IdlGen  𝑆 )  ∈  ( Idl ‘ 𝑅 )  ↔  𝐼  ∈  ( Idl ‘ 𝑅 ) ) ) | 
						
							| 11 |  | sseq2 | ⊢ ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( 𝑆  ⊆  ( 𝑅  IdlGen  𝑆 )  ↔  𝑆  ⊆  𝐼 ) ) | 
						
							| 12 |  | sseq1 | ⊢ ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗  ↔  𝐼  ⊆  𝑗 ) ) | 
						
							| 13 | 12 | imbi2d | ⊢ ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 )  ↔  ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) ) | 
						
							| 14 | 13 | ralbidv | ⊢ ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 )  ↔  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) ) | 
						
							| 15 | 10 11 14 | 3anbi123d | ⊢ ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( ( ( 𝑅  IdlGen  𝑆 )  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  ( 𝑅  IdlGen  𝑆 )  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝑗 ) )  ↔  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) ) ) | 
						
							| 16 | 9 15 | syl5ibcom | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  →  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) ) ) | 
						
							| 17 |  | igenmin | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼 )  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝐼 ) | 
						
							| 18 | 17 | 3adant3r3 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) )  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝐼 ) | 
						
							| 19 | 18 | adantlr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) )  →  ( 𝑅  IdlGen  𝑆 )  ⊆  𝐼 ) | 
						
							| 20 |  | ssint | ⊢ ( 𝐼  ⊆  ∩  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 }  ↔  ∀ 𝑗  ∈  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } 𝐼  ⊆  𝑗 ) | 
						
							| 21 |  | sseq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝑆  ⊆  𝑖  ↔  𝑆  ⊆  𝑗 ) ) | 
						
							| 22 | 21 | ralrab | ⊢ ( ∀ 𝑗  ∈  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } 𝐼  ⊆  𝑗  ↔  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) | 
						
							| 23 | 20 22 | sylbbr | ⊢ ( ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 )  →  𝐼  ⊆  ∩  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } ) | 
						
							| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) )  →  𝐼  ⊆  ∩  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } ) | 
						
							| 25 | 24 | adantl | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) )  →  𝐼  ⊆  ∩  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } ) | 
						
							| 26 | 1 2 | igenval | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑅  IdlGen  𝑆 )  =  ∩  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) )  →  ( 𝑅  IdlGen  𝑆 )  =  ∩  { 𝑖  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑖 } ) | 
						
							| 28 | 25 27 | sseqtrrd | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) )  →  𝐼  ⊆  ( 𝑅  IdlGen  𝑆 ) ) | 
						
							| 29 | 19 28 | eqssd | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) )  →  ( 𝑅  IdlGen  𝑆 )  =  𝐼 ) | 
						
							| 30 | 29 | ex | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) )  →  ( 𝑅  IdlGen  𝑆 )  =  𝐼 ) ) | 
						
							| 31 | 16 30 | impbid | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑅  IdlGen  𝑆 )  =  𝐼  ↔  ( 𝐼  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝐼  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( 𝑆  ⊆  𝑗  →  𝐼  ⊆  𝑗 ) ) ) ) |