Metamath Proof Explorer


Theorem prnc

Description: A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses prnc.1 𝐺 = ( 1st𝑅 )
prnc.2 𝐻 = ( 2nd𝑅 )
prnc.3 𝑋 = ran 𝐺
Assertion prnc ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )

Proof

Step Hyp Ref Expression
1 prnc.1 𝐺 = ( 1st𝑅 )
2 prnc.2 𝐻 = ( 2nd𝑅 )
3 prnc.3 𝑋 = ran 𝐺
4 crngorngo ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps )
5 ssrab2 { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋
6 5 a1i ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 )
7 eqid ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 )
8 1 3 7 rngo0cl ( 𝑅 ∈ RingOps → ( GId ‘ 𝐺 ) ∈ 𝑋 )
9 8 adantr ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( GId ‘ 𝐺 ) ∈ 𝑋 )
10 7 3 1 2 rngolz ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) = ( GId ‘ 𝐺 ) )
11 10 eqcomd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( GId ‘ 𝐺 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) )
12 oveq1 ( 𝑦 = ( GId ‘ 𝐺 ) → ( 𝑦 𝐻 𝐴 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) )
13 12 rspceeqv ( ( ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ( GId ‘ 𝐺 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) → ∃ 𝑦𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) )
14 9 11 13 syl2anc ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ∃ 𝑦𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) )
15 eqeq1 ( 𝑥 = ( GId ‘ 𝐺 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) )
16 15 rexbidv ( 𝑥 = ( GId ‘ 𝐺 ) → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) )
17 16 elrab ( ( GId ‘ 𝐺 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ∃ 𝑦𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) )
18 9 14 17 sylanbrc ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( GId ‘ 𝐺 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
19 eqeq1 ( 𝑥 = 𝑢 → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑢 = ( 𝑦 𝐻 𝐴 ) ) )
20 19 rexbidv ( 𝑥 = 𝑢 → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦𝑋 𝑢 = ( 𝑦 𝐻 𝐴 ) ) )
21 oveq1 ( 𝑦 = 𝑟 → ( 𝑦 𝐻 𝐴 ) = ( 𝑟 𝐻 𝐴 ) )
22 21 eqeq2d ( 𝑦 = 𝑟 → ( 𝑢 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑢 = ( 𝑟 𝐻 𝐴 ) ) )
23 22 cbvrexvw ( ∃ 𝑦𝑋 𝑢 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑟𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) )
24 20 23 bitrdi ( 𝑥 = 𝑢 → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑟𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) )
25 24 elrab ( 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝑢𝑋 ∧ ∃ 𝑟𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) )
26 eqeq1 ( 𝑥 = 𝑣 → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑣 = ( 𝑦 𝐻 𝐴 ) ) )
27 26 rexbidv ( 𝑥 = 𝑣 → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦𝑋 𝑣 = ( 𝑦 𝐻 𝐴 ) ) )
28 oveq1 ( 𝑦 = 𝑠 → ( 𝑦 𝐻 𝐴 ) = ( 𝑠 𝐻 𝐴 ) )
29 28 eqeq2d ( 𝑦 = 𝑠 → ( 𝑣 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑣 = ( 𝑠 𝐻 𝐴 ) ) )
30 29 cbvrexvw ( ∃ 𝑦𝑋 𝑣 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑠𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) )
31 27 30 bitrdi ( 𝑥 = 𝑣 → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑠𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) )
32 31 elrab ( 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝑣𝑋 ∧ ∃ 𝑠𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) )
33 1 2 3 rngodir ( ( 𝑅 ∈ RingOps ∧ ( 𝑟𝑋𝑠𝑋𝐴𝑋 ) ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) )
34 33 3exp2 ( 𝑅 ∈ RingOps → ( 𝑟𝑋 → ( 𝑠𝑋 → ( 𝐴𝑋 → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) ) ) )
35 34 imp42 ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟𝑋𝑠𝑋 ) ) ∧ 𝐴𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) )
36 1 3 rngogcl ( ( 𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋 ) → ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 )
37 36 3expib ( 𝑅 ∈ RingOps → ( ( 𝑟𝑋𝑠𝑋 ) → ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) )
38 37 imdistani ( ( 𝑅 ∈ RingOps ∧ ( 𝑟𝑋𝑠𝑋 ) ) → ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) )
39 1 2 3 rngocl ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋𝐴𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ 𝑋 )
40 39 3expa ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ 𝑋 )
41 eqid ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )
42 oveq1 ( 𝑦 = ( 𝑟 𝐺 𝑠 ) → ( 𝑦 𝐻 𝐴 ) = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) )
43 42 rspceeqv ( ( ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ∧ ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ) → ∃ 𝑦𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) )
44 41 43 mpan2 ( ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 → ∃ 𝑦𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) )
45 44 ad2antlr ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ∃ 𝑦𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) )
46 eqeq1 ( 𝑥 = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) )
47 46 rexbidv ( 𝑥 = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) )
48 47 elrab ( ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ 𝑋 ∧ ∃ 𝑦𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) )
49 40 45 48 sylanbrc ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
50 38 49 sylan ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟𝑋𝑠𝑋 ) ) ∧ 𝐴𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
51 35 50 eqeltrrd ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟𝑋𝑠𝑋 ) ) ∧ 𝐴𝑋 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
52 51 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( 𝑟𝑋𝑠𝑋 ) ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
53 52 anassrs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) ∧ 𝑠𝑋 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
54 oveq2 ( 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) )
55 54 eleq1d ( 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
56 53 55 syl5ibrcom ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) ∧ 𝑠𝑋 ) → ( 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
57 56 rexlimdva ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ( ∃ 𝑠𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
58 57 adantld ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ( ( 𝑣𝑋 ∧ ∃ 𝑠𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
59 32 58 syl5bi ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ( 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
60 59 ralrimiv ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
61 1 2 3 rngoass ( ( 𝑅 ∈ RingOps ∧ ( 𝑤𝑋𝑟𝑋𝐴𝑋 ) ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) )
62 61 3exp2 ( 𝑅 ∈ RingOps → ( 𝑤𝑋 → ( 𝑟𝑋 → ( 𝐴𝑋 → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) ) ) )
63 62 imp42 ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤𝑋𝑟𝑋 ) ) ∧ 𝐴𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) )
64 63 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( 𝑤𝑋𝑟𝑋 ) ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) )
65 1 2 3 rngocl ( ( 𝑅 ∈ RingOps ∧ 𝑤𝑋𝑟𝑋 ) → ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 )
66 65 3expib ( 𝑅 ∈ RingOps → ( ( 𝑤𝑋𝑟𝑋 ) → ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) )
67 66 imdistani ( ( 𝑅 ∈ RingOps ∧ ( 𝑤𝑋𝑟𝑋 ) ) → ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) )
68 1 2 3 rngocl ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋𝐴𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ 𝑋 )
69 68 3expa ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ 𝑋 )
70 eqid ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )
71 oveq1 ( 𝑦 = ( 𝑤 𝐻 𝑟 ) → ( 𝑦 𝐻 𝐴 ) = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) )
72 71 rspceeqv ( ( ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ∧ ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ) → ∃ 𝑦𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) )
73 70 72 mpan2 ( ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 → ∃ 𝑦𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) )
74 73 ad2antlr ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ∃ 𝑦𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) )
75 eqeq1 ( 𝑥 = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) )
76 75 rexbidv ( 𝑥 = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) )
77 76 elrab ( ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ 𝑋 ∧ ∃ 𝑦𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) )
78 69 74 77 sylanbrc ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ∧ 𝐴𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
79 67 78 sylan ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤𝑋𝑟𝑋 ) ) ∧ 𝐴𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
80 79 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( 𝑤𝑋𝑟𝑋 ) ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
81 64 80 eqeltrrd ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ ( 𝑤𝑋𝑟𝑋 ) ) → ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
82 81 anass1rs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) ∧ 𝑤𝑋 ) → ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
83 82 ralrimiva ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ∀ 𝑤𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
84 60 83 jca ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
85 oveq1 ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( 𝑢 𝐺 𝑣 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) )
86 85 eleq1d ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
87 86 ralbidv ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
88 oveq2 ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( 𝑤 𝐻 𝑢 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) )
89 88 eleq1d ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
90 89 ralbidv ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ∀ 𝑤𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
91 87 90 anbi12d ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ↔ ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
92 84 91 syl5ibrcom ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑟𝑋 ) → ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
93 92 rexlimdva ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ∃ 𝑟𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
94 93 adantld ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( 𝑢𝑋 ∧ ∃ 𝑟𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) → ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
95 25 94 syl5bi ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } → ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
96 95 ralrimiv ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ∀ 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) )
97 6 18 96 3jca ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
98 4 97 sylan ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) )
99 1 2 3 7 isidlc ( 𝑅 ∈ CRingOps → ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ↔ ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) )
100 99 adantr ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ↔ ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) )
101 98 100 mpbird ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) )
102 simpr ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → 𝐴𝑋 )
103 1 rneqi ran 𝐺 = ran ( 1st𝑅 )
104 3 103 eqtri 𝑋 = ran ( 1st𝑅 )
105 eqid ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 )
106 104 2 105 rngo1cl ( 𝑅 ∈ RingOps → ( GId ‘ 𝐻 ) ∈ 𝑋 )
107 106 adantr ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( GId ‘ 𝐻 ) ∈ 𝑋 )
108 2 104 105 rngolidm ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) = 𝐴 )
109 108 eqcomd ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → 𝐴 = ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) )
110 oveq1 ( 𝑦 = ( GId ‘ 𝐻 ) → ( 𝑦 𝐻 𝐴 ) = ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) )
111 110 rspceeqv ( ( ( GId ‘ 𝐻 ) ∈ 𝑋𝐴 = ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) ) → ∃ 𝑦𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) )
112 107 109 111 syl2anc ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ∃ 𝑦𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) )
113 4 112 sylan ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ∃ 𝑦𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) )
114 eqeq1 ( 𝑥 = 𝐴 → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ 𝐴 = ( 𝑦 𝐻 𝐴 ) ) )
115 114 rexbidv ( 𝑥 = 𝐴 → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) )
116 115 elrab ( 𝐴 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝐴𝑋 ∧ ∃ 𝑦𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) )
117 102 113 116 sylanbrc ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → 𝐴 ∈ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
118 117 snssd ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → { 𝐴 } ⊆ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )
119 snssg ( 𝐴𝑋 → ( 𝐴𝑗 ↔ { 𝐴 } ⊆ 𝑗 ) )
120 119 biimpar ( ( 𝐴𝑋 ∧ { 𝐴 } ⊆ 𝑗 ) → 𝐴𝑗 )
121 1 2 3 idllmulcl ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴𝑗𝑦𝑋 ) ) → ( 𝑦 𝐻 𝐴 ) ∈ 𝑗 )
122 121 anassrs ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑗 ) ∧ 𝑦𝑋 ) → ( 𝑦 𝐻 𝐴 ) ∈ 𝑗 )
123 eleq1 ( 𝑥 = ( 𝑦 𝐻 𝐴 ) → ( 𝑥𝑗 ↔ ( 𝑦 𝐻 𝐴 ) ∈ 𝑗 ) )
124 122 123 syl5ibrcom ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑗 ) ∧ 𝑦𝑋 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥𝑗 ) )
125 124 rexlimdva ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑗 ) → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥𝑗 ) )
126 125 adantr ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑗 ) ∧ 𝑥𝑋 ) → ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥𝑗 ) )
127 126 ralrimiva ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑗 ) → ∀ 𝑥𝑋 ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥𝑗 ) )
128 rabss ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ↔ ∀ 𝑥𝑋 ( ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥𝑗 ) )
129 127 128 sylibr ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑗 ) → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 )
130 129 ex ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝐴𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) )
131 120 130 syl5 ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( ( 𝐴𝑋 ∧ { 𝐴 } ⊆ 𝑗 ) → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) )
132 131 expdimp ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴𝑋 ) → ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) )
133 132 an32s ( ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) )
134 133 ralrimiva ( ( 𝑅 ∈ RingOps ∧ 𝐴𝑋 ) → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) )
135 4 134 sylan ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) )
136 101 118 135 3jca ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝐴 } ⊆ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) )
137 snssi ( 𝐴𝑋 → { 𝐴 } ⊆ 𝑋 )
138 1 3 igenval2 ( ( 𝑅 ∈ RingOps ∧ { 𝐴 } ⊆ 𝑋 ) → ( ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝐴 } ⊆ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) ) )
139 4 137 138 syl2an ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ( ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝐴 } ⊆ { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) ) )
140 136 139 mpbird ( ( 𝑅 ∈ CRingOps ∧ 𝐴𝑋 ) → ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥𝑋 ∣ ∃ 𝑦𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } )