| Step | Hyp | Ref | Expression | 
						
							| 1 |  | prnc.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | prnc.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝑅 ) | 
						
							| 3 |  | prnc.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | crngorngo | ⊢ ( 𝑅  ∈  CRingOps  →  𝑅  ∈  RingOps ) | 
						
							| 5 |  | ssrab2 | ⊢ { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑋 | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑋 ) | 
						
							| 7 |  | eqid | ⊢ ( GId ‘ 𝐺 )  =  ( GId ‘ 𝐺 ) | 
						
							| 8 | 1 3 7 | rngo0cl | ⊢ ( 𝑅  ∈  RingOps  →  ( GId ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( GId ‘ 𝐺 )  ∈  𝑋 ) | 
						
							| 10 | 7 3 1 2 | rngolz | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( GId ‘ 𝐺 ) 𝐻 𝐴 )  =  ( GId ‘ 𝐺 ) ) | 
						
							| 11 | 10 | eqcomd | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( GId ‘ 𝐺 )  =  ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑦  =  ( GId ‘ 𝐺 )  →  ( 𝑦 𝐻 𝐴 )  =  ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) | 
						
							| 13 | 12 | rspceeqv | ⊢ ( ( ( GId ‘ 𝐺 )  ∈  𝑋  ∧  ( GId ‘ 𝐺 )  =  ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) )  →  ∃ 𝑦  ∈  𝑋 ( GId ‘ 𝐺 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 14 | 9 11 13 | syl2anc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( GId ‘ 𝐺 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 15 |  | eqeq1 | ⊢ ( 𝑥  =  ( GId ‘ 𝐺 )  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ( GId ‘ 𝐺 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( 𝑥  =  ( GId ‘ 𝐺 )  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 ( GId ‘ 𝐺 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 17 | 16 | elrab | ⊢ ( ( GId ‘ 𝐺 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( ( GId ‘ 𝐺 )  ∈  𝑋  ∧  ∃ 𝑦  ∈  𝑋 ( GId ‘ 𝐺 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 18 | 9 14 17 | sylanbrc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( GId ‘ 𝐺 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑥  =  𝑢  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  𝑢  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( 𝑥  =  𝑢  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 𝑢  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 21 |  | oveq1 | ⊢ ( 𝑦  =  𝑟  →  ( 𝑦 𝐻 𝐴 )  =  ( 𝑟 𝐻 𝐴 ) ) | 
						
							| 22 | 21 | eqeq2d | ⊢ ( 𝑦  =  𝑟  →  ( 𝑢  =  ( 𝑦 𝐻 𝐴 )  ↔  𝑢  =  ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 23 | 22 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝑋 𝑢  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑟  ∈  𝑋 𝑢  =  ( 𝑟 𝐻 𝐴 ) ) | 
						
							| 24 | 20 23 | bitrdi | ⊢ ( 𝑥  =  𝑢  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑟  ∈  𝑋 𝑢  =  ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 25 | 24 | elrab | ⊢ ( 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( 𝑢  ∈  𝑋  ∧  ∃ 𝑟  ∈  𝑋 𝑢  =  ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 26 |  | eqeq1 | ⊢ ( 𝑥  =  𝑣  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  𝑣  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 27 | 26 | rexbidv | ⊢ ( 𝑥  =  𝑣  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 𝑣  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 28 |  | oveq1 | ⊢ ( 𝑦  =  𝑠  →  ( 𝑦 𝐻 𝐴 )  =  ( 𝑠 𝐻 𝐴 ) ) | 
						
							| 29 | 28 | eqeq2d | ⊢ ( 𝑦  =  𝑠  →  ( 𝑣  =  ( 𝑦 𝐻 𝐴 )  ↔  𝑣  =  ( 𝑠 𝐻 𝐴 ) ) ) | 
						
							| 30 | 29 | cbvrexvw | ⊢ ( ∃ 𝑦  ∈  𝑋 𝑣  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑠  ∈  𝑋 𝑣  =  ( 𝑠 𝐻 𝐴 ) ) | 
						
							| 31 | 27 30 | bitrdi | ⊢ ( 𝑥  =  𝑣  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑠  ∈  𝑋 𝑣  =  ( 𝑠 𝐻 𝐴 ) ) ) | 
						
							| 32 | 31 | elrab | ⊢ ( 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( 𝑣  ∈  𝑋  ∧  ∃ 𝑠  ∈  𝑋 𝑣  =  ( 𝑠 𝐻 𝐴 ) ) ) | 
						
							| 33 | 1 2 3 | rngodir | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) | 
						
							| 34 | 33 | 3exp2 | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑟  ∈  𝑋  →  ( 𝑠  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) ) ) ) | 
						
							| 35 | 34 | imp42 | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) | 
						
							| 36 | 1 3 | rngogcl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 )  →  ( 𝑟 𝐺 𝑠 )  ∈  𝑋 ) | 
						
							| 37 | 36 | 3expib | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 )  →  ( 𝑟 𝐺 𝑠 )  ∈  𝑋 ) ) | 
						
							| 38 | 37 | imdistani | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  →  ( 𝑅  ∈  RingOps  ∧  ( 𝑟 𝐺 𝑠 )  ∈  𝑋 ) ) | 
						
							| 39 | 1 2 3 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟 𝐺 𝑠 )  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  ∈  𝑋 ) | 
						
							| 40 | 39 | 3expa | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟 𝐺 𝑠 )  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  ∈  𝑋 ) | 
						
							| 41 |  | eqid | ⊢ ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) | 
						
							| 42 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑟 𝐺 𝑠 )  →  ( 𝑦 𝐻 𝐴 )  =  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ) | 
						
							| 43 | 42 | rspceeqv | ⊢ ( ( ( 𝑟 𝐺 𝑠 )  ∈  𝑋  ∧  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 44 | 41 43 | mpan2 | ⊢ ( ( 𝑟 𝐺 𝑠 )  ∈  𝑋  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 45 | 44 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟 𝐺 𝑠 )  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 46 |  | eqeq1 | ⊢ ( 𝑥  =  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 47 | 46 | rexbidv | ⊢ ( 𝑥  =  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 48 | 47 | elrab | ⊢ ( ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  ∈  𝑋  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 49 | 40 45 48 | sylanbrc | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟 𝐺 𝑠 )  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 50 | 38 49 | sylan | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 51 | 35 50 | eqeltrrd | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 52 | 51 | an32s | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑟  ∈  𝑋  ∧  𝑠  ∈  𝑋 ) )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 53 | 52 | anassrs | ⊢ ( ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  ∧  𝑠  ∈  𝑋 )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 54 |  | oveq2 | ⊢ ( 𝑣  =  ( 𝑠 𝐻 𝐴 )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  =  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) | 
						
							| 55 | 54 | eleq1d | ⊢ ( 𝑣  =  ( 𝑠 𝐻 𝐴 )  →  ( ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 56 | 53 55 | syl5ibrcom | ⊢ ( ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  ∧  𝑠  ∈  𝑋 )  →  ( 𝑣  =  ( 𝑠 𝐻 𝐴 )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 57 | 56 | rexlimdva | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ( ∃ 𝑠  ∈  𝑋 𝑣  =  ( 𝑠 𝐻 𝐴 )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 58 | 57 | adantld | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ( ( 𝑣  ∈  𝑋  ∧  ∃ 𝑠  ∈  𝑋 𝑣  =  ( 𝑠 𝐻 𝐴 ) )  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 59 | 32 58 | biimtrid | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ( 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  →  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 60 | 59 | ralrimiv | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 61 | 1 2 3 | rngoass | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 62 | 61 | 3exp2 | ⊢ ( 𝑅  ∈  RingOps  →  ( 𝑤  ∈  𝑋  →  ( 𝑟  ∈  𝑋  →  ( 𝐴  ∈  𝑋  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) ) ) ) | 
						
							| 63 | 62 | imp42 | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 64 | 63 | an32s | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 ) )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 65 | 1 2 3 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 )  →  ( 𝑤 𝐻 𝑟 )  ∈  𝑋 ) | 
						
							| 66 | 65 | 3expib | ⊢ ( 𝑅  ∈  RingOps  →  ( ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 )  →  ( 𝑤 𝐻 𝑟 )  ∈  𝑋 ) ) | 
						
							| 67 | 66 | imdistani | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 ) )  →  ( 𝑅  ∈  RingOps  ∧  ( 𝑤 𝐻 𝑟 )  ∈  𝑋 ) ) | 
						
							| 68 | 1 2 3 | rngocl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤 𝐻 𝑟 )  ∈  𝑋  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  𝑋 ) | 
						
							| 69 | 68 | 3expa | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤 𝐻 𝑟 )  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  𝑋 ) | 
						
							| 70 |  | eqid | ⊢ ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) | 
						
							| 71 |  | oveq1 | ⊢ ( 𝑦  =  ( 𝑤 𝐻 𝑟 )  →  ( 𝑦 𝐻 𝐴 )  =  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ) | 
						
							| 72 | 71 | rspceeqv | ⊢ ( ( ( 𝑤 𝐻 𝑟 )  ∈  𝑋  ∧  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 73 | 70 72 | mpan2 | ⊢ ( ( 𝑤 𝐻 𝑟 )  ∈  𝑋  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 74 | 73 | ad2antlr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤 𝐻 𝑟 )  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 75 |  | eqeq1 | ⊢ ( 𝑥  =  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 76 | 75 | rexbidv | ⊢ ( 𝑥  =  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 77 | 76 | elrab | ⊢ ( ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  𝑋  ∧  ∃ 𝑦  ∈  𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 78 | 69 74 77 | sylanbrc | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤 𝐻 𝑟 )  ∈  𝑋 )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 79 | 67 78 | sylan | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 ) )  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 80 | 79 | an32s | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 ) )  →  ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 81 | 64 80 | eqeltrrd | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑤  ∈  𝑋  ∧  𝑟  ∈  𝑋 ) )  →  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 82 | 81 | anass1rs | ⊢ ( ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  ∧  𝑤  ∈  𝑋 )  →  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 83 | 82 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 84 | 60 83 | jca | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( 𝑢 𝐺 𝑣 )  =  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ) | 
						
							| 86 | 85 | eleq1d | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 87 | 86 | ralbidv | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 88 |  | oveq2 | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( 𝑤 𝐻 𝑢 )  =  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) | 
						
							| 89 | 88 | eleq1d | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 90 | 89 | ralbidv | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 91 | 87 90 | anbi12d | ⊢ ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } )  ↔  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 92 | 84 91 | syl5ibrcom | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑟  ∈  𝑋 )  →  ( 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 93 | 92 | rexlimdva | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ∃ 𝑟  ∈  𝑋 𝑢  =  ( 𝑟 𝐻 𝐴 )  →  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 94 | 93 | adantld | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑢  ∈  𝑋  ∧  ∃ 𝑟  ∈  𝑋 𝑢  =  ( 𝑟 𝐻 𝐴 ) )  →  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 95 | 25 94 | biimtrid | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  →  ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 96 | 95 | ralrimiv | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) | 
						
							| 97 | 6 18 96 | 3jca | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑋  ∧  ( GId ‘ 𝐺 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 98 | 4 97 | sylan | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑋  ∧  ( GId ‘ 𝐺 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) | 
						
							| 99 | 1 2 3 7 | isidlc | ⊢ ( 𝑅  ∈  CRingOps  →  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∈  ( Idl ‘ 𝑅 )  ↔  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑋  ∧  ( GId ‘ 𝐺 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) ) | 
						
							| 100 | 99 | adantr | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∈  ( Idl ‘ 𝑅 )  ↔  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑋  ∧  ( GId ‘ 𝐺 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑢  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑤  ∈  𝑋 ( 𝑤 𝐻 𝑢 )  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) ) ) ) | 
						
							| 101 | 98 100 | mpbird | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 102 |  | simpr | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  𝑋 ) | 
						
							| 103 | 1 | rneqi | ⊢ ran  𝐺  =  ran  ( 1st  ‘ 𝑅 ) | 
						
							| 104 | 3 103 | eqtri | ⊢ 𝑋  =  ran  ( 1st  ‘ 𝑅 ) | 
						
							| 105 |  | eqid | ⊢ ( GId ‘ 𝐻 )  =  ( GId ‘ 𝐻 ) | 
						
							| 106 | 104 2 105 | rngo1cl | ⊢ ( 𝑅  ∈  RingOps  →  ( GId ‘ 𝐻 )  ∈  𝑋 ) | 
						
							| 107 | 106 | adantr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( GId ‘ 𝐻 )  ∈  𝑋 ) | 
						
							| 108 | 2 104 105 | rngolidm | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( GId ‘ 𝐻 ) 𝐻 𝐴 )  =  𝐴 ) | 
						
							| 109 | 108 | eqcomd | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  𝐴  =  ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) ) | 
						
							| 110 |  | oveq1 | ⊢ ( 𝑦  =  ( GId ‘ 𝐻 )  →  ( 𝑦 𝐻 𝐴 )  =  ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) ) | 
						
							| 111 | 110 | rspceeqv | ⊢ ( ( ( GId ‘ 𝐻 )  ∈  𝑋  ∧  𝐴  =  ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) )  →  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 112 | 107 109 111 | syl2anc | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 113 | 4 112 | sylan | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦 𝐻 𝐴 ) ) | 
						
							| 114 |  | eqeq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  𝐴  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 115 | 114 | rexbidv | ⊢ ( 𝑥  =  𝐴  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  ↔  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 116 | 115 | elrab | ⊢ ( 𝐴  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( 𝐴  ∈  𝑋  ∧  ∃ 𝑦  ∈  𝑋 𝐴  =  ( 𝑦 𝐻 𝐴 ) ) ) | 
						
							| 117 | 102 113 116 | sylanbrc | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  𝐴  ∈  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 118 | 117 | snssd | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  { 𝐴 }  ⊆  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) | 
						
							| 119 |  | snssg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  𝑗  ↔  { 𝐴 }  ⊆  𝑗 ) ) | 
						
							| 120 | 119 | biimpar | ⊢ ( ( 𝐴  ∈  𝑋  ∧  { 𝐴 }  ⊆  𝑗 )  →  𝐴  ∈  𝑗 ) | 
						
							| 121 | 1 2 3 | idllmulcl | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  ( 𝐴  ∈  𝑗  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑦 𝐻 𝐴 )  ∈  𝑗 ) | 
						
							| 122 | 121 | anassrs | ⊢ ( ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑗 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑦 𝐻 𝐴 )  ∈  𝑗 ) | 
						
							| 123 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  →  ( 𝑥  ∈  𝑗  ↔  ( 𝑦 𝐻 𝐴 )  ∈  𝑗 ) ) | 
						
							| 124 | 122 123 | syl5ibrcom | ⊢ ( ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑗 )  ∧  𝑦  ∈  𝑋 )  →  ( 𝑥  =  ( 𝑦 𝐻 𝐴 )  →  𝑥  ∈  𝑗 ) ) | 
						
							| 125 | 124 | rexlimdva | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑗 )  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  →  𝑥  ∈  𝑗 ) ) | 
						
							| 126 | 125 | adantr | ⊢ ( ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑗 )  ∧  𝑥  ∈  𝑋 )  →  ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  →  𝑥  ∈  𝑗 ) ) | 
						
							| 127 | 126 | ralrimiva | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑗 )  →  ∀ 𝑥  ∈  𝑋 ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  →  𝑥  ∈  𝑗 ) ) | 
						
							| 128 |  | rabss | ⊢ ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗  ↔  ∀ 𝑥  ∈  𝑋 ( ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 )  →  𝑥  ∈  𝑗 ) ) | 
						
							| 129 | 127 128 | sylibr | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑗 )  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) | 
						
							| 130 | 129 | ex | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  →  ( 𝐴  ∈  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) | 
						
							| 131 | 120 130 | syl5 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  →  ( ( 𝐴  ∈  𝑋  ∧  { 𝐴 }  ⊆  𝑗 )  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) | 
						
							| 132 | 131 | expdimp | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  ∧  𝐴  ∈  𝑋 )  →  ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) | 
						
							| 133 | 132 | an32s | ⊢ ( ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  ∧  𝑗  ∈  ( Idl ‘ 𝑅 ) )  →  ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) | 
						
							| 134 | 133 | ralrimiva | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) | 
						
							| 135 | 4 134 | sylan | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) | 
						
							| 136 | 101 118 135 | 3jca | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∈  ( Idl ‘ 𝑅 )  ∧  { 𝐴 }  ⊆  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) ) | 
						
							| 137 |  | snssi | ⊢ ( 𝐴  ∈  𝑋  →  { 𝐴 }  ⊆  𝑋 ) | 
						
							| 138 | 1 3 | igenval2 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  { 𝐴 }  ⊆  𝑋 )  →  ( ( 𝑅  IdlGen  { 𝐴 } )  =  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∈  ( Idl ‘ 𝑅 )  ∧  { 𝐴 }  ⊆  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) ) ) | 
						
							| 139 | 4 137 138 | syl2an | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ( ( 𝑅  IdlGen  { 𝐴 } )  =  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ↔  ( { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∈  ( Idl ‘ 𝑅 )  ∧  { 𝐴 }  ⊆  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ∧  ∀ 𝑗  ∈  ( Idl ‘ 𝑅 ) ( { 𝐴 }  ⊆  𝑗  →  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) }  ⊆  𝑗 ) ) ) ) | 
						
							| 140 | 136 139 | mpbird | ⊢ ( ( 𝑅  ∈  CRingOps  ∧  𝐴  ∈  𝑋 )  →  ( 𝑅  IdlGen  { 𝐴 } )  =  { 𝑥  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑥  =  ( 𝑦 𝐻 𝐴 ) } ) |