Step |
Hyp |
Ref |
Expression |
1 |
|
prnc.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
prnc.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
3 |
|
prnc.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
crngorngo |
⊢ ( 𝑅 ∈ CRingOps → 𝑅 ∈ RingOps ) |
5 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 |
6 |
5
|
a1i |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ) |
7 |
|
eqid |
⊢ ( GId ‘ 𝐺 ) = ( GId ‘ 𝐺 ) |
8 |
1 3 7
|
rngo0cl |
⊢ ( 𝑅 ∈ RingOps → ( GId ‘ 𝐺 ) ∈ 𝑋 ) |
9 |
8
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( GId ‘ 𝐺 ) ∈ 𝑋 ) |
10 |
7 3 1 2
|
rngolz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) = ( GId ‘ 𝐺 ) ) |
11 |
10
|
eqcomd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( GId ‘ 𝐺 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑦 = ( GId ‘ 𝐺 ) → ( 𝑦 𝐻 𝐴 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) |
13 |
12
|
rspceeqv |
⊢ ( ( ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ( GId ‘ 𝐺 ) = ( ( GId ‘ 𝐺 ) 𝐻 𝐴 ) ) → ∃ 𝑦 ∈ 𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) |
14 |
9 11 13
|
syl2anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) |
15 |
|
eqeq1 |
⊢ ( 𝑥 = ( GId ‘ 𝐺 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
16 |
15
|
rexbidv |
⊢ ( 𝑥 = ( GId ‘ 𝐺 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
17 |
16
|
elrab |
⊢ ( ( GId ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( GId ‘ 𝐺 ) ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 ( GId ‘ 𝐺 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
18 |
9 14 17
|
sylanbrc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( GId ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
19 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑢 → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑢 = ( 𝑦 𝐻 𝐴 ) ) ) |
20 |
19
|
rexbidv |
⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑢 = ( 𝑦 𝐻 𝐴 ) ) ) |
21 |
|
oveq1 |
⊢ ( 𝑦 = 𝑟 → ( 𝑦 𝐻 𝐴 ) = ( 𝑟 𝐻 𝐴 ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑦 = 𝑟 → ( 𝑢 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑢 = ( 𝑟 𝐻 𝐴 ) ) ) |
23 |
22
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑢 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑟 ∈ 𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) |
24 |
20 23
|
bitrdi |
⊢ ( 𝑥 = 𝑢 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑟 ∈ 𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) ) |
25 |
24
|
elrab |
⊢ ( 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝑢 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑣 → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑣 = ( 𝑦 𝐻 𝐴 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 𝐻 𝐴 ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑦 = 𝑠 → ( 𝑦 𝐻 𝐴 ) = ( 𝑠 𝐻 𝐴 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑦 = 𝑠 → ( 𝑣 = ( 𝑦 𝐻 𝐴 ) ↔ 𝑣 = ( 𝑠 𝐻 𝐴 ) ) ) |
30 |
29
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑠 ∈ 𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) |
31 |
27 30
|
bitrdi |
⊢ ( 𝑥 = 𝑣 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑠 ∈ 𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) ) |
32 |
31
|
elrab |
⊢ ( 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝑣 ∈ 𝑋 ∧ ∃ 𝑠 ∈ 𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) ) |
33 |
1 2 3
|
rngodir |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) |
34 |
33
|
3exp2 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑟 ∈ 𝑋 → ( 𝑠 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) ) ) ) |
35 |
34
|
imp42 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) |
36 |
1 3
|
rngogcl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) |
37 |
36
|
3expib |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) → ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ) |
38 |
37
|
imdistani |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) ) → ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ) |
39 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
40 |
39
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
41 |
|
eqid |
⊢ ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) |
42 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑟 𝐺 𝑠 ) → ( 𝑦 𝐻 𝐴 ) = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ) |
43 |
42
|
rspceeqv |
⊢ ( ( ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ∧ ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) |
44 |
41 43
|
mpan2 |
⊢ ( ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) |
45 |
44
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) |
46 |
|
eqeq1 |
⊢ ( 𝑥 = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
47 |
46
|
rexbidv |
⊢ ( 𝑥 = ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
48 |
47
|
elrab |
⊢ ( ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
49 |
40 45 48
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 𝐺 𝑠 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
50 |
38 49
|
sylan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑟 𝐺 𝑠 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
51 |
35 50
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
52 |
51
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑠 ∈ 𝑋 ) ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
53 |
52
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝑋 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
54 |
|
oveq2 |
⊢ ( 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ) |
55 |
54
|
eleq1d |
⊢ ( 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( 𝑟 𝐻 𝐴 ) 𝐺 ( 𝑠 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
56 |
53 55
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ 𝑠 ∈ 𝑋 ) → ( 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
57 |
56
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ( ∃ 𝑠 ∈ 𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
58 |
57
|
adantld |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ( ( 𝑣 ∈ 𝑋 ∧ ∃ 𝑠 ∈ 𝑋 𝑣 = ( 𝑠 𝐻 𝐴 ) ) → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
59 |
32 58
|
syl5bi |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ( 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } → ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
60 |
59
|
ralrimiv |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
61 |
1 2 3
|
rngoass |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) |
62 |
61
|
3exp2 |
⊢ ( 𝑅 ∈ RingOps → ( 𝑤 ∈ 𝑋 → ( 𝑟 ∈ 𝑋 → ( 𝐴 ∈ 𝑋 → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) ) ) ) |
63 |
62
|
imp42 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) |
64 |
63
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) |
65 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) → ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) |
66 |
65
|
3expib |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) → ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ) |
67 |
66
|
imdistani |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) → ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ) |
68 |
1 2 3
|
rngocl |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
69 |
68
|
3expa |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ 𝑋 ) |
70 |
|
eqid |
⊢ ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) |
71 |
|
oveq1 |
⊢ ( 𝑦 = ( 𝑤 𝐻 𝑟 ) → ( 𝑦 𝐻 𝐴 ) = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ) |
72 |
71
|
rspceeqv |
⊢ ( ( ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ∧ ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) |
73 |
70 72
|
mpan2 |
⊢ ( ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 → ∃ 𝑦 ∈ 𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) |
74 |
73
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) |
75 |
|
eqeq1 |
⊢ ( 𝑥 = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
76 |
75
|
rexbidv |
⊢ ( 𝑥 = ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
77 |
76
|
elrab |
⊢ ( ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) = ( 𝑦 𝐻 𝐴 ) ) ) |
78 |
69 74 77
|
sylanbrc |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 𝐻 𝑟 ) ∈ 𝑋 ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
79 |
67 78
|
sylan |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
80 |
79
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) → ( ( 𝑤 𝐻 𝑟 ) 𝐻 𝐴 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
81 |
64 80
|
eqeltrrd |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑤 ∈ 𝑋 ∧ 𝑟 ∈ 𝑋 ) ) → ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
82 |
81
|
anass1rs |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
83 |
82
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
84 |
60 83
|
jca |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
85 |
|
oveq1 |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( 𝑢 𝐺 𝑣 ) = ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ) |
86 |
85
|
eleq1d |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
87 |
86
|
ralbidv |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
88 |
|
oveq2 |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( 𝑤 𝐻 𝑢 ) = ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ) |
89 |
88
|
eleq1d |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
90 |
89
|
ralbidv |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
91 |
87 90
|
anbi12d |
⊢ ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ↔ ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ( 𝑟 𝐻 𝐴 ) 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 ( 𝑟 𝐻 𝐴 ) ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
92 |
84 91
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑟 ∈ 𝑋 ) → ( 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
93 |
92
|
rexlimdva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ∃ 𝑟 ∈ 𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
94 |
93
|
adantld |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑢 ∈ 𝑋 ∧ ∃ 𝑟 ∈ 𝑋 𝑢 = ( 𝑟 𝐻 𝐴 ) ) → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
95 |
25 94
|
syl5bi |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } → ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
96 |
95
|
ralrimiv |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) |
97 |
6 18 96
|
3jca |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
98 |
4 97
|
sylan |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) |
99 |
1 2 3 7
|
isidlc |
⊢ ( 𝑅 ∈ CRingOps → ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ↔ ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) ) |
100 |
99
|
adantr |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ↔ ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑋 ∧ ( GId ‘ 𝐺 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑢 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( ∀ 𝑣 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ( 𝑢 𝐺 𝑣 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑤 ∈ 𝑋 ( 𝑤 𝐻 𝑢 ) ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) ) ) ) |
101 |
98 100
|
mpbird |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ) |
102 |
|
simpr |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
103 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝑅 ) |
104 |
3 103
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝑅 ) |
105 |
|
eqid |
⊢ ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 ) |
106 |
104 2 105
|
rngo1cl |
⊢ ( 𝑅 ∈ RingOps → ( GId ‘ 𝐻 ) ∈ 𝑋 ) |
107 |
106
|
adantr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( GId ‘ 𝐻 ) ∈ 𝑋 ) |
108 |
2 104 105
|
rngolidm |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) = 𝐴 ) |
109 |
108
|
eqcomd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐴 = ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) ) |
110 |
|
oveq1 |
⊢ ( 𝑦 = ( GId ‘ 𝐻 ) → ( 𝑦 𝐻 𝐴 ) = ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) ) |
111 |
110
|
rspceeqv |
⊢ ( ( ( GId ‘ 𝐻 ) ∈ 𝑋 ∧ 𝐴 = ( ( GId ‘ 𝐻 ) 𝐻 𝐴 ) ) → ∃ 𝑦 ∈ 𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) |
112 |
107 109 111
|
syl2anc |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) |
113 |
4 112
|
sylan |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑦 ∈ 𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) |
114 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ 𝐴 = ( 𝑦 𝐻 𝐴 ) ) ) |
115 |
114
|
rexbidv |
⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) ↔ ∃ 𝑦 ∈ 𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) ) |
116 |
115
|
elrab |
⊢ ( 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( 𝐴 ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 𝐴 = ( 𝑦 𝐻 𝐴 ) ) ) |
117 |
102 113 116
|
sylanbrc |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → 𝐴 ∈ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
118 |
117
|
snssd |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → { 𝐴 } ⊆ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |
119 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ 𝑗 ↔ { 𝐴 } ⊆ 𝑗 ) ) |
120 |
119
|
biimpar |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ { 𝐴 } ⊆ 𝑗 ) → 𝐴 ∈ 𝑗 ) |
121 |
1 2 3
|
idllmulcl |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ ( 𝐴 ∈ 𝑗 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑦 𝐻 𝐴 ) ∈ 𝑗 ) |
122 |
121
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑗 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑦 𝐻 𝐴 ) ∈ 𝑗 ) |
123 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑦 𝐻 𝐴 ) → ( 𝑥 ∈ 𝑗 ↔ ( 𝑦 𝐻 𝐴 ) ∈ 𝑗 ) ) |
124 |
122 123
|
syl5ibrcom |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑗 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥 ∈ 𝑗 ) ) |
125 |
124
|
rexlimdva |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑗 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥 ∈ 𝑗 ) ) |
126 |
125
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑗 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥 ∈ 𝑗 ) ) |
127 |
126
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑗 ) → ∀ 𝑥 ∈ 𝑋 ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥 ∈ 𝑗 ) ) |
128 |
|
rabss |
⊢ ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ↔ ∀ 𝑥 ∈ 𝑋 ( ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) → 𝑥 ∈ 𝑗 ) ) |
129 |
127 128
|
sylibr |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑗 ) → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) |
130 |
129
|
ex |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝐴 ∈ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) |
131 |
120 130
|
syl5 |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( ( 𝐴 ∈ 𝑋 ∧ { 𝐴 } ⊆ 𝑗 ) → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) |
132 |
131
|
expdimp |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) ∧ 𝐴 ∈ 𝑋 ) → ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) |
133 |
132
|
an32s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) ∧ 𝑗 ∈ ( Idl ‘ 𝑅 ) ) → ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) |
134 |
133
|
ralrimiva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) |
135 |
4 134
|
sylan |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) |
136 |
101 118 135
|
3jca |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝐴 } ⊆ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) ) |
137 |
|
snssi |
⊢ ( 𝐴 ∈ 𝑋 → { 𝐴 } ⊆ 𝑋 ) |
138 |
1 3
|
igenval2 |
⊢ ( ( 𝑅 ∈ RingOps ∧ { 𝐴 } ⊆ 𝑋 ) → ( ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝐴 } ⊆ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) ) ) |
139 |
4 137 138
|
syl2an |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ↔ ( { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∈ ( Idl ‘ 𝑅 ) ∧ { 𝐴 } ⊆ { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ∧ ∀ 𝑗 ∈ ( Idl ‘ 𝑅 ) ( { 𝐴 } ⊆ 𝑗 → { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ⊆ 𝑗 ) ) ) ) |
140 |
136 139
|
mpbird |
⊢ ( ( 𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋 ) → ( 𝑅 IdlGen { 𝐴 } ) = { 𝑥 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑥 = ( 𝑦 𝐻 𝐴 ) } ) |