Step |
Hyp |
Ref |
Expression |
1 |
|
isfldidl.1 |
⊢ 𝐺 = ( 1st ‘ 𝐾 ) |
2 |
|
isfldidl.2 |
⊢ 𝐻 = ( 2nd ‘ 𝐾 ) |
3 |
|
isfldidl.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
isfldidl.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
|
isfldidl.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
6 |
|
fldcrng |
⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ CRingOps ) |
7 |
|
flddivrng |
⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ DivRingOps ) |
8 |
1 2 3 4 5
|
dvrunz |
⊢ ( 𝐾 ∈ DivRingOps → 𝑈 ≠ 𝑍 ) |
9 |
7 8
|
syl |
⊢ ( 𝐾 ∈ Fld → 𝑈 ≠ 𝑍 ) |
10 |
1 2 3 4
|
divrngidl |
⊢ ( 𝐾 ∈ DivRingOps → ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) |
11 |
7 10
|
syl |
⊢ ( 𝐾 ∈ Fld → ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) |
12 |
6 9 11
|
3jca |
⊢ ( 𝐾 ∈ Fld → ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |
13 |
|
crngorngo |
⊢ ( 𝐾 ∈ CRingOps → 𝐾 ∈ RingOps ) |
14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ RingOps ) |
15 |
|
simp2 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝑈 ≠ 𝑍 ) |
16 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝐾 ) |
17 |
3 16
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝐾 ) |
18 |
17 2 5
|
rngo1cl |
⊢ ( 𝐾 ∈ RingOps → 𝑈 ∈ 𝑋 ) |
19 |
13 18
|
syl |
⊢ ( 𝐾 ∈ CRingOps → 𝑈 ∈ 𝑋 ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑈 ∈ 𝑋 ) |
21 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ { 𝑍 } ) ) |
22 |
|
snssi |
⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ⊆ 𝑋 ) |
23 |
1 3
|
igenss |
⊢ ( ( 𝐾 ∈ RingOps ∧ { 𝑥 } ⊆ 𝑋 ) → { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ) |
24 |
22 23
|
sylan2 |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ) |
25 |
|
vex |
⊢ 𝑥 ∈ V |
26 |
25
|
snss |
⊢ ( 𝑥 ∈ ( 𝐾 IdlGen { 𝑥 } ) ↔ { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ) |
27 |
26
|
biimpri |
⊢ ( { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) → 𝑥 ∈ ( 𝐾 IdlGen { 𝑥 } ) ) |
28 |
|
eleq2 |
⊢ ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } → ( 𝑥 ∈ ( 𝐾 IdlGen { 𝑥 } ) ↔ 𝑥 ∈ { 𝑍 } ) ) |
29 |
27 28
|
syl5ibcom |
⊢ ( { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) → ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } → 𝑥 ∈ { 𝑍 } ) ) |
30 |
29
|
con3dimp |
⊢ ( ( { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ∧ ¬ 𝑥 ∈ { 𝑍 } ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
31 |
24 30
|
sylan |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ 𝑥 ∈ { 𝑍 } ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
32 |
31
|
anasss |
⊢ ( ( 𝐾 ∈ RingOps ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ { 𝑍 } ) ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
33 |
21 32
|
sylan2b |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
35 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑥 ∈ 𝑋 ) |
36 |
35
|
snssd |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) → { 𝑥 } ⊆ 𝑋 ) |
37 |
1 3
|
igenidl |
⊢ ( ( 𝐾 ∈ RingOps ∧ { 𝑥 } ⊆ 𝑋 ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ ( Idl ‘ 𝐾 ) ) |
38 |
36 37
|
sylan2 |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ ( Idl ‘ 𝐾 ) ) |
39 |
|
eleq2 |
⊢ ( ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } → ( ( 𝐾 IdlGen { 𝑥 } ) ∈ ( Idl ‘ 𝐾 ) ↔ ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) ) |
40 |
38 39
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } → ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) ) |
41 |
40
|
imp |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) |
42 |
41
|
an32s |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) |
43 |
|
ovex |
⊢ ( 𝐾 IdlGen { 𝑥 } ) ∈ V |
44 |
43
|
elpr |
⊢ ( ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ↔ ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ∨ ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) ) |
45 |
42 44
|
sylib |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ∨ ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) ) |
46 |
45
|
ord |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } → ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) ) |
47 |
34 46
|
mpd |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) |
48 |
13 47
|
sylanl1 |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) |
49 |
1 2 3
|
prnc |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝐾 IdlGen { 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
50 |
35 49
|
sylan2 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
51 |
50
|
adantlr |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
52 |
48 51
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑋 = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
53 |
20 52
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑈 ∈ { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
54 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑈 → ( 𝑧 = ( 𝑦 𝐻 𝑥 ) ↔ 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
55 |
54
|
rexbidv |
⊢ ( 𝑧 = 𝑈 → ( ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
56 |
55
|
elrab |
⊢ ( 𝑈 ∈ { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ↔ ( 𝑈 ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
57 |
53 56
|
sylib |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝑈 ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
58 |
57
|
simprd |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) |
59 |
|
eqcom |
⊢ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ 𝑈 = ( 𝑦 𝐻 𝑥 ) ) |
60 |
59
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) |
61 |
58 60
|
sylibr |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
63 |
62
|
3adant2 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
64 |
14 15 63
|
jca32 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ( 𝐾 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
65 |
1 2 4 3 5
|
isdrngo3 |
⊢ ( 𝐾 ∈ DivRingOps ↔ ( 𝐾 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
66 |
64 65
|
sylibr |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ DivRingOps ) |
67 |
|
simp1 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ CRingOps ) |
68 |
|
isfld2 |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |
69 |
66 67 68
|
sylanbrc |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ Fld ) |
70 |
12 69
|
impbii |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |