| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfldidl.1 |
⊢ 𝐺 = ( 1st ‘ 𝐾 ) |
| 2 |
|
isfldidl.2 |
⊢ 𝐻 = ( 2nd ‘ 𝐾 ) |
| 3 |
|
isfldidl.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
isfldidl.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
|
isfldidl.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
| 6 |
|
fldcrngo |
⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ CRingOps ) |
| 7 |
|
flddivrng |
⊢ ( 𝐾 ∈ Fld → 𝐾 ∈ DivRingOps ) |
| 8 |
1 2 3 4 5
|
dvrunz |
⊢ ( 𝐾 ∈ DivRingOps → 𝑈 ≠ 𝑍 ) |
| 9 |
7 8
|
syl |
⊢ ( 𝐾 ∈ Fld → 𝑈 ≠ 𝑍 ) |
| 10 |
1 2 3 4
|
divrngidl |
⊢ ( 𝐾 ∈ DivRingOps → ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) |
| 11 |
7 10
|
syl |
⊢ ( 𝐾 ∈ Fld → ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) |
| 12 |
6 9 11
|
3jca |
⊢ ( 𝐾 ∈ Fld → ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |
| 13 |
|
crngorngo |
⊢ ( 𝐾 ∈ CRingOps → 𝐾 ∈ RingOps ) |
| 14 |
13
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ RingOps ) |
| 15 |
|
simp2 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝑈 ≠ 𝑍 ) |
| 16 |
1
|
rneqi |
⊢ ran 𝐺 = ran ( 1st ‘ 𝐾 ) |
| 17 |
3 16
|
eqtri |
⊢ 𝑋 = ran ( 1st ‘ 𝐾 ) |
| 18 |
17 2 5
|
rngo1cl |
⊢ ( 𝐾 ∈ RingOps → 𝑈 ∈ 𝑋 ) |
| 19 |
13 18
|
syl |
⊢ ( 𝐾 ∈ CRingOps → 𝑈 ∈ 𝑋 ) |
| 20 |
19
|
ad2antrr |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑈 ∈ 𝑋 ) |
| 21 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ↔ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ { 𝑍 } ) ) |
| 22 |
|
snssi |
⊢ ( 𝑥 ∈ 𝑋 → { 𝑥 } ⊆ 𝑋 ) |
| 23 |
1 3
|
igenss |
⊢ ( ( 𝐾 ∈ RingOps ∧ { 𝑥 } ⊆ 𝑋 ) → { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ) |
| 24 |
22 23
|
sylan2 |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ) |
| 25 |
|
vex |
⊢ 𝑥 ∈ V |
| 26 |
25
|
snss |
⊢ ( 𝑥 ∈ ( 𝐾 IdlGen { 𝑥 } ) ↔ { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ) |
| 27 |
26
|
biimpri |
⊢ ( { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) → 𝑥 ∈ ( 𝐾 IdlGen { 𝑥 } ) ) |
| 28 |
|
eleq2 |
⊢ ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } → ( 𝑥 ∈ ( 𝐾 IdlGen { 𝑥 } ) ↔ 𝑥 ∈ { 𝑍 } ) ) |
| 29 |
27 28
|
syl5ibcom |
⊢ ( { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) → ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } → 𝑥 ∈ { 𝑍 } ) ) |
| 30 |
29
|
con3dimp |
⊢ ( ( { 𝑥 } ⊆ ( 𝐾 IdlGen { 𝑥 } ) ∧ ¬ 𝑥 ∈ { 𝑍 } ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
| 31 |
24 30
|
sylan |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ ¬ 𝑥 ∈ { 𝑍 } ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
| 32 |
31
|
anasss |
⊢ ( ( 𝐾 ∈ RingOps ∧ ( 𝑥 ∈ 𝑋 ∧ ¬ 𝑥 ∈ { 𝑍 } ) ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
| 33 |
21 32
|
sylan2b |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
| 34 |
33
|
adantlr |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ) |
| 35 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑥 ∈ 𝑋 ) |
| 36 |
35
|
snssd |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) → { 𝑥 } ⊆ 𝑋 ) |
| 37 |
1 3
|
igenidl |
⊢ ( ( 𝐾 ∈ RingOps ∧ { 𝑥 } ⊆ 𝑋 ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ ( Idl ‘ 𝐾 ) ) |
| 38 |
36 37
|
sylan2 |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ ( Idl ‘ 𝐾 ) ) |
| 39 |
|
eleq2 |
⊢ ( ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } → ( ( 𝐾 IdlGen { 𝑥 } ) ∈ ( Idl ‘ 𝐾 ) ↔ ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) ) |
| 40 |
38 39
|
syl5ibcom |
⊢ ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } → ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) ) |
| 41 |
40
|
imp |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) |
| 42 |
41
|
an32s |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ) |
| 43 |
|
ovex |
⊢ ( 𝐾 IdlGen { 𝑥 } ) ∈ V |
| 44 |
43
|
elpr |
⊢ ( ( 𝐾 IdlGen { 𝑥 } ) ∈ { { 𝑍 } , 𝑋 } ↔ ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ∨ ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) ) |
| 45 |
42 44
|
sylib |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } ∨ ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) ) |
| 46 |
45
|
ord |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ¬ ( 𝐾 IdlGen { 𝑥 } ) = { 𝑍 } → ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) ) |
| 47 |
34 46
|
mpd |
⊢ ( ( ( 𝐾 ∈ RingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) |
| 48 |
13 47
|
sylanl1 |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = 𝑋 ) |
| 49 |
1 2 3
|
prnc |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝐾 IdlGen { 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
| 50 |
35 49
|
sylan2 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
| 51 |
50
|
adantlr |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝐾 IdlGen { 𝑥 } ) = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
| 52 |
48 51
|
eqtr3d |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑋 = { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
| 53 |
20 52
|
eleqtrd |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → 𝑈 ∈ { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ) |
| 54 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑈 → ( 𝑧 = ( 𝑦 𝐻 𝑥 ) ↔ 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
| 55 |
54
|
rexbidv |
⊢ ( 𝑧 = 𝑈 → ( ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
| 56 |
55
|
elrab |
⊢ ( 𝑈 ∈ { 𝑧 ∈ 𝑋 ∣ ∃ 𝑦 ∈ 𝑋 𝑧 = ( 𝑦 𝐻 𝑥 ) } ↔ ( 𝑈 ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
| 57 |
53 56
|
sylib |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( 𝑈 ∈ 𝑋 ∧ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) ) |
| 58 |
57
|
simprd |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) |
| 59 |
|
eqcom |
⊢ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ 𝑈 = ( 𝑦 𝐻 𝑥 ) ) |
| 60 |
59
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 𝑈 = ( 𝑦 𝐻 𝑥 ) ) |
| 61 |
58 60
|
sylibr |
⊢ ( ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
| 62 |
61
|
ralrimiva |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
| 63 |
62
|
3adant2 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
| 64 |
14 15 63
|
jca32 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → ( 𝐾 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 65 |
1 2 4 3 5
|
isdrngo3 |
⊢ ( 𝐾 ∈ DivRingOps ↔ ( 𝐾 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 66 |
64 65
|
sylibr |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ DivRingOps ) |
| 67 |
|
simp1 |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ CRingOps ) |
| 68 |
|
isfld2 |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ DivRingOps ∧ 𝐾 ∈ CRingOps ) ) |
| 69 |
66 67 68
|
sylanbrc |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) → 𝐾 ∈ Fld ) |
| 70 |
12 69
|
impbii |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |