| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfldidl.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝐾 ) | 
						
							| 2 |  | isfldidl.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝐾 ) | 
						
							| 3 |  | isfldidl.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | isfldidl.4 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 5 |  | isfldidl.5 | ⊢ 𝑈  =  ( GId ‘ 𝐻 ) | 
						
							| 6 |  | fldcrngo | ⊢ ( 𝐾  ∈  Fld  →  𝐾  ∈  CRingOps ) | 
						
							| 7 |  | flddivrng | ⊢ ( 𝐾  ∈  Fld  →  𝐾  ∈  DivRingOps ) | 
						
							| 8 | 1 2 3 4 5 | dvrunz | ⊢ ( 𝐾  ∈  DivRingOps  →  𝑈  ≠  𝑍 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝐾  ∈  Fld  →  𝑈  ≠  𝑍 ) | 
						
							| 10 | 1 2 3 4 | divrngidl | ⊢ ( 𝐾  ∈  DivRingOps  →  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝐾  ∈  Fld  →  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) | 
						
							| 12 | 6 9 11 | 3jca | ⊢ ( 𝐾  ∈  Fld  →  ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) | 
						
							| 13 |  | crngorngo | ⊢ ( 𝐾  ∈  CRingOps  →  𝐾  ∈  RingOps ) | 
						
							| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  𝐾  ∈  RingOps ) | 
						
							| 15 |  | simp2 | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  𝑈  ≠  𝑍 ) | 
						
							| 16 | 1 | rneqi | ⊢ ran  𝐺  =  ran  ( 1st  ‘ 𝐾 ) | 
						
							| 17 | 3 16 | eqtri | ⊢ 𝑋  =  ran  ( 1st  ‘ 𝐾 ) | 
						
							| 18 | 17 2 5 | rngo1cl | ⊢ ( 𝐾  ∈  RingOps  →  𝑈  ∈  𝑋 ) | 
						
							| 19 | 13 18 | syl | ⊢ ( 𝐾  ∈  CRingOps  →  𝑈  ∈  𝑋 ) | 
						
							| 20 | 19 | ad2antrr | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝑈  ∈  𝑋 ) | 
						
							| 21 |  | eldif | ⊢ ( 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } )  ↔  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  { 𝑍 } ) ) | 
						
							| 22 |  | snssi | ⊢ ( 𝑥  ∈  𝑋  →  { 𝑥 }  ⊆  𝑋 ) | 
						
							| 23 | 1 3 | igenss | ⊢ ( ( 𝐾  ∈  RingOps  ∧  { 𝑥 }  ⊆  𝑋 )  →  { 𝑥 }  ⊆  ( 𝐾  IdlGen  { 𝑥 } ) ) | 
						
							| 24 | 22 23 | sylan2 | ⊢ ( ( 𝐾  ∈  RingOps  ∧  𝑥  ∈  𝑋 )  →  { 𝑥 }  ⊆  ( 𝐾  IdlGen  { 𝑥 } ) ) | 
						
							| 25 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 26 | 25 | snss | ⊢ ( 𝑥  ∈  ( 𝐾  IdlGen  { 𝑥 } )  ↔  { 𝑥 }  ⊆  ( 𝐾  IdlGen  { 𝑥 } ) ) | 
						
							| 27 | 26 | biimpri | ⊢ ( { 𝑥 }  ⊆  ( 𝐾  IdlGen  { 𝑥 } )  →  𝑥  ∈  ( 𝐾  IdlGen  { 𝑥 } ) ) | 
						
							| 28 |  | eleq2 | ⊢ ( ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 }  →  ( 𝑥  ∈  ( 𝐾  IdlGen  { 𝑥 } )  ↔  𝑥  ∈  { 𝑍 } ) ) | 
						
							| 29 | 27 28 | syl5ibcom | ⊢ ( { 𝑥 }  ⊆  ( 𝐾  IdlGen  { 𝑥 } )  →  ( ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 }  →  𝑥  ∈  { 𝑍 } ) ) | 
						
							| 30 | 29 | con3dimp | ⊢ ( ( { 𝑥 }  ⊆  ( 𝐾  IdlGen  { 𝑥 } )  ∧  ¬  𝑥  ∈  { 𝑍 } )  →  ¬  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 } ) | 
						
							| 31 | 24 30 | sylan | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  𝑥  ∈  𝑋 )  ∧  ¬  𝑥  ∈  { 𝑍 } )  →  ¬  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 } ) | 
						
							| 32 | 31 | anasss | ⊢ ( ( 𝐾  ∈  RingOps  ∧  ( 𝑥  ∈  𝑋  ∧  ¬  𝑥  ∈  { 𝑍 } ) )  →  ¬  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 } ) | 
						
							| 33 | 21 32 | sylan2b | ⊢ ( ( 𝐾  ∈  RingOps  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ¬  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 } ) | 
						
							| 34 | 33 | adantlr | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ¬  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 } ) | 
						
							| 35 |  | eldifi | ⊢ ( 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } )  →  𝑥  ∈  𝑋 ) | 
						
							| 36 | 35 | snssd | ⊢ ( 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } )  →  { 𝑥 }  ⊆  𝑋 ) | 
						
							| 37 | 1 3 | igenidl | ⊢ ( ( 𝐾  ∈  RingOps  ∧  { 𝑥 }  ⊆  𝑋 )  →  ( 𝐾  IdlGen  { 𝑥 } )  ∈  ( Idl ‘ 𝐾 ) ) | 
						
							| 38 | 36 37 | sylan2 | ⊢ ( ( 𝐾  ∈  RingOps  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐾  IdlGen  { 𝑥 } )  ∈  ( Idl ‘ 𝐾 ) ) | 
						
							| 39 |  | eleq2 | ⊢ ( ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 }  →  ( ( 𝐾  IdlGen  { 𝑥 } )  ∈  ( Idl ‘ 𝐾 )  ↔  ( 𝐾  IdlGen  { 𝑥 } )  ∈  { { 𝑍 } ,  𝑋 } ) ) | 
						
							| 40 | 38 39 | syl5ibcom | ⊢ ( ( 𝐾  ∈  RingOps  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 }  →  ( 𝐾  IdlGen  { 𝑥 } )  ∈  { { 𝑍 } ,  𝑋 } ) ) | 
						
							| 41 | 40 | imp | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  ( 𝐾  IdlGen  { 𝑥 } )  ∈  { { 𝑍 } ,  𝑋 } ) | 
						
							| 42 | 41 | an32s | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐾  IdlGen  { 𝑥 } )  ∈  { { 𝑍 } ,  𝑋 } ) | 
						
							| 43 |  | ovex | ⊢ ( 𝐾  IdlGen  { 𝑥 } )  ∈  V | 
						
							| 44 | 43 | elpr | ⊢ ( ( 𝐾  IdlGen  { 𝑥 } )  ∈  { { 𝑍 } ,  𝑋 }  ↔  ( ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 }  ∨  ( 𝐾  IdlGen  { 𝑥 } )  =  𝑋 ) ) | 
						
							| 45 | 42 44 | sylib | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 }  ∨  ( 𝐾  IdlGen  { 𝑥 } )  =  𝑋 ) ) | 
						
							| 46 | 45 | ord | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( ¬  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑍 }  →  ( 𝐾  IdlGen  { 𝑥 } )  =  𝑋 ) ) | 
						
							| 47 | 34 46 | mpd | ⊢ ( ( ( 𝐾  ∈  RingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐾  IdlGen  { 𝑥 } )  =  𝑋 ) | 
						
							| 48 | 13 47 | sylanl1 | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐾  IdlGen  { 𝑥 } )  =  𝑋 ) | 
						
							| 49 | 1 2 3 | prnc | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑥  ∈  𝑋 )  →  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑧  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 ) } ) | 
						
							| 50 | 35 49 | sylan2 | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑧  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 ) } ) | 
						
							| 51 | 50 | adantlr | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝐾  IdlGen  { 𝑥 } )  =  { 𝑧  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 ) } ) | 
						
							| 52 | 48 51 | eqtr3d | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝑋  =  { 𝑧  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 ) } ) | 
						
							| 53 | 20 52 | eleqtrd | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  𝑈  ∈  { 𝑧  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 ) } ) | 
						
							| 54 |  | eqeq1 | ⊢ ( 𝑧  =  𝑈  →  ( 𝑧  =  ( 𝑦 𝐻 𝑥 )  ↔  𝑈  =  ( 𝑦 𝐻 𝑥 ) ) ) | 
						
							| 55 | 54 | rexbidv | ⊢ ( 𝑧  =  𝑈  →  ( ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 )  ↔  ∃ 𝑦  ∈  𝑋 𝑈  =  ( 𝑦 𝐻 𝑥 ) ) ) | 
						
							| 56 | 55 | elrab | ⊢ ( 𝑈  ∈  { 𝑧  ∈  𝑋  ∣  ∃ 𝑦  ∈  𝑋 𝑧  =  ( 𝑦 𝐻 𝑥 ) }  ↔  ( 𝑈  ∈  𝑋  ∧  ∃ 𝑦  ∈  𝑋 𝑈  =  ( 𝑦 𝐻 𝑥 ) ) ) | 
						
							| 57 | 53 56 | sylib | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ( 𝑈  ∈  𝑋  ∧  ∃ 𝑦  ∈  𝑋 𝑈  =  ( 𝑦 𝐻 𝑥 ) ) ) | 
						
							| 58 | 57 | simprd | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ∃ 𝑦  ∈  𝑋 𝑈  =  ( 𝑦 𝐻 𝑥 ) ) | 
						
							| 59 |  | eqcom | ⊢ ( ( 𝑦 𝐻 𝑥 )  =  𝑈  ↔  𝑈  =  ( 𝑦 𝐻 𝑥 ) ) | 
						
							| 60 | 59 | rexbii | ⊢ ( ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐻 𝑥 )  =  𝑈  ↔  ∃ 𝑦  ∈  𝑋 𝑈  =  ( 𝑦 𝐻 𝑥 ) ) | 
						
							| 61 | 58 60 | sylibr | ⊢ ( ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ∧  𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) )  →  ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐻 𝑥 )  =  𝑈 ) | 
						
							| 62 | 61 | ralrimiva | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  ∀ 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐻 𝑥 )  =  𝑈 ) | 
						
							| 63 | 62 | 3adant2 | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  ∀ 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐻 𝑥 )  =  𝑈 ) | 
						
							| 64 | 14 15 63 | jca32 | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  ( 𝐾  ∈  RingOps  ∧  ( 𝑈  ≠  𝑍  ∧  ∀ 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐻 𝑥 )  =  𝑈 ) ) ) | 
						
							| 65 | 1 2 4 3 5 | isdrngo3 | ⊢ ( 𝐾  ∈  DivRingOps  ↔  ( 𝐾  ∈  RingOps  ∧  ( 𝑈  ≠  𝑍  ∧  ∀ 𝑥  ∈  ( 𝑋  ∖  { 𝑍 } ) ∃ 𝑦  ∈  𝑋 ( 𝑦 𝐻 𝑥 )  =  𝑈 ) ) ) | 
						
							| 66 | 64 65 | sylibr | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  𝐾  ∈  DivRingOps ) | 
						
							| 67 |  | simp1 | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  𝐾  ∈  CRingOps ) | 
						
							| 68 |  | isfld2 | ⊢ ( 𝐾  ∈  Fld  ↔  ( 𝐾  ∈  DivRingOps  ∧  𝐾  ∈  CRingOps ) ) | 
						
							| 69 | 66 67 68 | sylanbrc | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  →  𝐾  ∈  Fld ) | 
						
							| 70 | 12 69 | impbii | ⊢ ( 𝐾  ∈  Fld  ↔  ( 𝐾  ∈  CRingOps  ∧  𝑈  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) |