Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | igenval.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
igenval.2 | ⊢ 𝑋 = ran 𝐺 | ||
Assertion | igenss | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | ⊢ 𝐺 = ( 1st ‘ 𝑅 ) | |
2 | igenval.2 | ⊢ 𝑋 = ran 𝐺 | |
3 | ssintub | ⊢ 𝑆 ⊆ ∩ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } | |
4 | 1 2 | igenval | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑅 IdlGen 𝑆 ) = ∩ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ) |
5 | 3 4 | sseqtrrid | ⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) ) |