Metamath Proof Explorer


Theorem igenss

Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1 𝐺 = ( 1st𝑅 )
igenval.2 𝑋 = ran 𝐺
Assertion igenss ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) )

Proof

Step Hyp Ref Expression
1 igenval.1 𝐺 = ( 1st𝑅 )
2 igenval.2 𝑋 = ran 𝐺
3 ssintub 𝑆 { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 }
4 1 2 igenval ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
5 3 4 sseqtrrid ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → 𝑆 ⊆ ( 𝑅 IdlGen 𝑆 ) )