Metamath Proof Explorer


Theorem igenss

Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1
|- G = ( 1st ` R )
igenval.2
|- X = ran G
Assertion igenss
|- ( ( R e. RingOps /\ S C_ X ) -> S C_ ( R IdlGen S ) )

Proof

Step Hyp Ref Expression
1 igenval.1
 |-  G = ( 1st ` R )
2 igenval.2
 |-  X = ran G
3 ssintub
 |-  S C_ |^| { j e. ( Idl ` R ) | S C_ j }
4 1 2 igenval
 |-  ( ( R e. RingOps /\ S C_ X ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } )
5 3 4 sseqtrrid
 |-  ( ( R e. RingOps /\ S C_ X ) -> S C_ ( R IdlGen S ) )