Description: A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | igenval.1 | |- G = ( 1st ` R ) |
|
igenval.2 | |- X = ran G |
||
Assertion | igenss | |- ( ( R e. RingOps /\ S C_ X ) -> S C_ ( R IdlGen S ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | |- G = ( 1st ` R ) |
|
2 | igenval.2 | |- X = ran G |
|
3 | ssintub | |- S C_ |^| { j e. ( Idl ` R ) | S C_ j } |
|
4 | 1 2 | igenval | |- ( ( R e. RingOps /\ S C_ X ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
5 | 3 4 | sseqtrrid | |- ( ( R e. RingOps /\ S C_ X ) -> S C_ ( R IdlGen S ) ) |