Step |
Hyp |
Ref |
Expression |
1 |
|
igenval.1 |
|- G = ( 1st ` R ) |
2 |
|
igenval.2 |
|- X = ran G |
3 |
1 2
|
igenval |
|- ( ( R e. RingOps /\ S C_ X ) -> ( R IdlGen S ) = |^| { j e. ( Idl ` R ) | S C_ j } ) |
4 |
1 2
|
rngoidl |
|- ( R e. RingOps -> X e. ( Idl ` R ) ) |
5 |
|
sseq2 |
|- ( j = X -> ( S C_ j <-> S C_ X ) ) |
6 |
5
|
rspcev |
|- ( ( X e. ( Idl ` R ) /\ S C_ X ) -> E. j e. ( Idl ` R ) S C_ j ) |
7 |
4 6
|
sylan |
|- ( ( R e. RingOps /\ S C_ X ) -> E. j e. ( Idl ` R ) S C_ j ) |
8 |
|
rabn0 |
|- ( { j e. ( Idl ` R ) | S C_ j } =/= (/) <-> E. j e. ( Idl ` R ) S C_ j ) |
9 |
7 8
|
sylibr |
|- ( ( R e. RingOps /\ S C_ X ) -> { j e. ( Idl ` R ) | S C_ j } =/= (/) ) |
10 |
|
ssrab2 |
|- { j e. ( Idl ` R ) | S C_ j } C_ ( Idl ` R ) |
11 |
|
intidl |
|- ( ( R e. RingOps /\ { j e. ( Idl ` R ) | S C_ j } =/= (/) /\ { j e. ( Idl ` R ) | S C_ j } C_ ( Idl ` R ) ) -> |^| { j e. ( Idl ` R ) | S C_ j } e. ( Idl ` R ) ) |
12 |
10 11
|
mp3an3 |
|- ( ( R e. RingOps /\ { j e. ( Idl ` R ) | S C_ j } =/= (/) ) -> |^| { j e. ( Idl ` R ) | S C_ j } e. ( Idl ` R ) ) |
13 |
9 12
|
syldan |
|- ( ( R e. RingOps /\ S C_ X ) -> |^| { j e. ( Idl ` R ) | S C_ j } e. ( Idl ` R ) ) |
14 |
3 13
|
eqeltrd |
|- ( ( R e. RingOps /\ S C_ X ) -> ( R IdlGen S ) e. ( Idl ` R ) ) |