Step |
Hyp |
Ref |
Expression |
1 |
|
igenval.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
2 |
|
igenval.2 |
⊢ 𝑋 = ran 𝐺 |
3 |
1 2
|
igenval |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑅 IdlGen 𝑆 ) = ∩ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ) |
4 |
1 2
|
rngoidl |
⊢ ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) ) |
5 |
|
sseq2 |
⊢ ( 𝑗 = 𝑋 → ( 𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋 ) ) |
6 |
5
|
rspcev |
⊢ ( ( 𝑋 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑗 ∈ ( Idl ‘ 𝑅 ) 𝑆 ⊆ 𝑗 ) |
7 |
4 6
|
sylan |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑗 ∈ ( Idl ‘ 𝑅 ) 𝑆 ⊆ 𝑗 ) |
8 |
|
rabn0 |
⊢ ( { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ≠ ∅ ↔ ∃ 𝑗 ∈ ( Idl ‘ 𝑅 ) 𝑆 ⊆ 𝑗 ) |
9 |
7 8
|
sylibr |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ≠ ∅ ) |
10 |
|
ssrab2 |
⊢ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ⊆ ( Idl ‘ 𝑅 ) |
11 |
|
intidl |
⊢ ( ( 𝑅 ∈ RingOps ∧ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ≠ ∅ ∧ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ⊆ ( Idl ‘ 𝑅 ) ) → ∩ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ∈ ( Idl ‘ 𝑅 ) ) |
12 |
10 11
|
mp3an3 |
⊢ ( ( 𝑅 ∈ RingOps ∧ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ≠ ∅ ) → ∩ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ∈ ( Idl ‘ 𝑅 ) ) |
13 |
9 12
|
syldan |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ∩ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆 ⊆ 𝑗 } ∈ ( Idl ‘ 𝑅 ) ) |
14 |
3 13
|
eqeltrd |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) ) |