Metamath Proof Explorer


Theorem igenidl

Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses igenval.1 𝐺 = ( 1st𝑅 )
igenval.2 𝑋 = ran 𝐺
Assertion igenidl ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) )

Proof

Step Hyp Ref Expression
1 igenval.1 𝐺 = ( 1st𝑅 )
2 igenval.2 𝑋 = ran 𝐺
3 1 2 igenval ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → ( 𝑅 IdlGen 𝑆 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } )
4 1 2 rngoidl ( 𝑅 ∈ RingOps → 𝑋 ∈ ( Idl ‘ 𝑅 ) )
5 sseq2 ( 𝑗 = 𝑋 → ( 𝑆𝑗𝑆𝑋 ) )
6 5 rspcev ( ( 𝑋 ∈ ( Idl ‘ 𝑅 ) ∧ 𝑆𝑋 ) → ∃ 𝑗 ∈ ( Idl ‘ 𝑅 ) 𝑆𝑗 )
7 4 6 sylan ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → ∃ 𝑗 ∈ ( Idl ‘ 𝑅 ) 𝑆𝑗 )
8 rabn0 ( { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ≠ ∅ ↔ ∃ 𝑗 ∈ ( Idl ‘ 𝑅 ) 𝑆𝑗 )
9 7 8 sylibr ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ≠ ∅ )
10 ssrab2 { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ⊆ ( Idl ‘ 𝑅 )
11 intidl ( ( 𝑅 ∈ RingOps ∧ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ≠ ∅ ∧ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ⊆ ( Idl ‘ 𝑅 ) ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ∈ ( Idl ‘ 𝑅 ) )
12 10 11 mp3an3 ( ( 𝑅 ∈ RingOps ∧ { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ≠ ∅ ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ∈ ( Idl ‘ 𝑅 ) )
13 9 12 syldan ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝑆𝑗 } ∈ ( Idl ‘ 𝑅 ) )
14 3 13 eqeltrd ( ( 𝑅 ∈ RingOps ∧ 𝑆𝑋 ) → ( 𝑅 IdlGen 𝑆 ) ∈ ( Idl ‘ 𝑅 ) )