| Step | Hyp | Ref | Expression | 
						
							| 1 |  | igenval.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝑅 ) | 
						
							| 2 |  | igenval.2 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 3 | 1 2 | igenval | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑅  IdlGen  𝑆 )  =  ∩  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 } ) | 
						
							| 4 | 1 2 | rngoidl | ⊢ ( 𝑅  ∈  RingOps  →  𝑋  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 5 |  | sseq2 | ⊢ ( 𝑗  =  𝑋  →  ( 𝑆  ⊆  𝑗  ↔  𝑆  ⊆  𝑋 ) ) | 
						
							| 6 | 5 | rspcev | ⊢ ( ( 𝑋  ∈  ( Idl ‘ 𝑅 )  ∧  𝑆  ⊆  𝑋 )  →  ∃ 𝑗  ∈  ( Idl ‘ 𝑅 ) 𝑆  ⊆  𝑗 ) | 
						
							| 7 | 4 6 | sylan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ∃ 𝑗  ∈  ( Idl ‘ 𝑅 ) 𝑆  ⊆  𝑗 ) | 
						
							| 8 |  | rabn0 | ⊢ ( { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ≠  ∅  ↔  ∃ 𝑗  ∈  ( Idl ‘ 𝑅 ) 𝑆  ⊆  𝑗 ) | 
						
							| 9 | 7 8 | sylibr | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ≠  ∅ ) | 
						
							| 10 |  | ssrab2 | ⊢ { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ⊆  ( Idl ‘ 𝑅 ) | 
						
							| 11 |  | intidl | ⊢ ( ( 𝑅  ∈  RingOps  ∧  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ≠  ∅  ∧  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ⊆  ( Idl ‘ 𝑅 ) )  →  ∩  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 12 | 10 11 | mp3an3 | ⊢ ( ( 𝑅  ∈  RingOps  ∧  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ≠  ∅ )  →  ∩  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 13 | 9 12 | syldan | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ∩  { 𝑗  ∈  ( Idl ‘ 𝑅 )  ∣  𝑆  ⊆  𝑗 }  ∈  ( Idl ‘ 𝑅 ) ) | 
						
							| 14 | 3 13 | eqeltrd | ⊢ ( ( 𝑅  ∈  RingOps  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑅  IdlGen  𝑆 )  ∈  ( Idl ‘ 𝑅 ) ) |