| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfldidl.1 |  |-  G = ( 1st ` K ) | 
						
							| 2 |  | isfldidl.2 |  |-  H = ( 2nd ` K ) | 
						
							| 3 |  | isfldidl.3 |  |-  X = ran G | 
						
							| 4 |  | isfldidl.4 |  |-  Z = ( GId ` G ) | 
						
							| 5 |  | isfldidl.5 |  |-  U = ( GId ` H ) | 
						
							| 6 |  | fldcrngo |  |-  ( K e. Fld -> K e. CRingOps ) | 
						
							| 7 |  | flddivrng |  |-  ( K e. Fld -> K e. DivRingOps ) | 
						
							| 8 | 1 2 3 4 5 | dvrunz |  |-  ( K e. DivRingOps -> U =/= Z ) | 
						
							| 9 | 7 8 | syl |  |-  ( K e. Fld -> U =/= Z ) | 
						
							| 10 | 1 2 3 4 | divrngidl |  |-  ( K e. DivRingOps -> ( Idl ` K ) = { { Z } , X } ) | 
						
							| 11 | 7 10 | syl |  |-  ( K e. Fld -> ( Idl ` K ) = { { Z } , X } ) | 
						
							| 12 | 6 9 11 | 3jca |  |-  ( K e. Fld -> ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) | 
						
							| 13 |  | crngorngo |  |-  ( K e. CRingOps -> K e. RingOps ) | 
						
							| 14 | 13 | 3ad2ant1 |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. RingOps ) | 
						
							| 15 |  | simp2 |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> U =/= Z ) | 
						
							| 16 | 1 | rneqi |  |-  ran G = ran ( 1st ` K ) | 
						
							| 17 | 3 16 | eqtri |  |-  X = ran ( 1st ` K ) | 
						
							| 18 | 17 2 5 | rngo1cl |  |-  ( K e. RingOps -> U e. X ) | 
						
							| 19 | 13 18 | syl |  |-  ( K e. CRingOps -> U e. X ) | 
						
							| 20 | 19 | ad2antrr |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> U e. X ) | 
						
							| 21 |  | eldif |  |-  ( x e. ( X \ { Z } ) <-> ( x e. X /\ -. x e. { Z } ) ) | 
						
							| 22 |  | snssi |  |-  ( x e. X -> { x } C_ X ) | 
						
							| 23 | 1 3 | igenss |  |-  ( ( K e. RingOps /\ { x } C_ X ) -> { x } C_ ( K IdlGen { x } ) ) | 
						
							| 24 | 22 23 | sylan2 |  |-  ( ( K e. RingOps /\ x e. X ) -> { x } C_ ( K IdlGen { x } ) ) | 
						
							| 25 |  | vex |  |-  x e. _V | 
						
							| 26 | 25 | snss |  |-  ( x e. ( K IdlGen { x } ) <-> { x } C_ ( K IdlGen { x } ) ) | 
						
							| 27 | 26 | biimpri |  |-  ( { x } C_ ( K IdlGen { x } ) -> x e. ( K IdlGen { x } ) ) | 
						
							| 28 |  | eleq2 |  |-  ( ( K IdlGen { x } ) = { Z } -> ( x e. ( K IdlGen { x } ) <-> x e. { Z } ) ) | 
						
							| 29 | 27 28 | syl5ibcom |  |-  ( { x } C_ ( K IdlGen { x } ) -> ( ( K IdlGen { x } ) = { Z } -> x e. { Z } ) ) | 
						
							| 30 | 29 | con3dimp |  |-  ( ( { x } C_ ( K IdlGen { x } ) /\ -. x e. { Z } ) -> -. ( K IdlGen { x } ) = { Z } ) | 
						
							| 31 | 24 30 | sylan |  |-  ( ( ( K e. RingOps /\ x e. X ) /\ -. x e. { Z } ) -> -. ( K IdlGen { x } ) = { Z } ) | 
						
							| 32 | 31 | anasss |  |-  ( ( K e. RingOps /\ ( x e. X /\ -. x e. { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) | 
						
							| 33 | 21 32 | sylan2b |  |-  ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) | 
						
							| 35 |  | eldifi |  |-  ( x e. ( X \ { Z } ) -> x e. X ) | 
						
							| 36 | 35 | snssd |  |-  ( x e. ( X \ { Z } ) -> { x } C_ X ) | 
						
							| 37 | 1 3 | igenidl |  |-  ( ( K e. RingOps /\ { x } C_ X ) -> ( K IdlGen { x } ) e. ( Idl ` K ) ) | 
						
							| 38 | 36 37 | sylan2 |  |-  ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) e. ( Idl ` K ) ) | 
						
							| 39 |  | eleq2 |  |-  ( ( Idl ` K ) = { { Z } , X } -> ( ( K IdlGen { x } ) e. ( Idl ` K ) <-> ( K IdlGen { x } ) e. { { Z } , X } ) ) | 
						
							| 40 | 38 39 | syl5ibcom |  |-  ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> ( ( Idl ` K ) = { { Z } , X } -> ( K IdlGen { x } ) e. { { Z } , X } ) ) | 
						
							| 41 | 40 | imp |  |-  ( ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) /\ ( Idl ` K ) = { { Z } , X } ) -> ( K IdlGen { x } ) e. { { Z } , X } ) | 
						
							| 42 | 41 | an32s |  |-  ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) e. { { Z } , X } ) | 
						
							| 43 |  | ovex |  |-  ( K IdlGen { x } ) e. _V | 
						
							| 44 | 43 | elpr |  |-  ( ( K IdlGen { x } ) e. { { Z } , X } <-> ( ( K IdlGen { x } ) = { Z } \/ ( K IdlGen { x } ) = X ) ) | 
						
							| 45 | 42 44 | sylib |  |-  ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( ( K IdlGen { x } ) = { Z } \/ ( K IdlGen { x } ) = X ) ) | 
						
							| 46 | 45 | ord |  |-  ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( -. ( K IdlGen { x } ) = { Z } -> ( K IdlGen { x } ) = X ) ) | 
						
							| 47 | 34 46 | mpd |  |-  ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = X ) | 
						
							| 48 | 13 47 | sylanl1 |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = X ) | 
						
							| 49 | 1 2 3 | prnc |  |-  ( ( K e. CRingOps /\ x e. X ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) | 
						
							| 50 | 35 49 | sylan2 |  |-  ( ( K e. CRingOps /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) | 
						
							| 51 | 50 | adantlr |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) | 
						
							| 52 | 48 51 | eqtr3d |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> X = { z e. X | E. y e. X z = ( y H x ) } ) | 
						
							| 53 | 20 52 | eleqtrd |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> U e. { z e. X | E. y e. X z = ( y H x ) } ) | 
						
							| 54 |  | eqeq1 |  |-  ( z = U -> ( z = ( y H x ) <-> U = ( y H x ) ) ) | 
						
							| 55 | 54 | rexbidv |  |-  ( z = U -> ( E. y e. X z = ( y H x ) <-> E. y e. X U = ( y H x ) ) ) | 
						
							| 56 | 55 | elrab |  |-  ( U e. { z e. X | E. y e. X z = ( y H x ) } <-> ( U e. X /\ E. y e. X U = ( y H x ) ) ) | 
						
							| 57 | 53 56 | sylib |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( U e. X /\ E. y e. X U = ( y H x ) ) ) | 
						
							| 58 | 57 | simprd |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> E. y e. X U = ( y H x ) ) | 
						
							| 59 |  | eqcom |  |-  ( ( y H x ) = U <-> U = ( y H x ) ) | 
						
							| 60 | 59 | rexbii |  |-  ( E. y e. X ( y H x ) = U <-> E. y e. X U = ( y H x ) ) | 
						
							| 61 | 58 60 | sylibr |  |-  ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> E. y e. X ( y H x ) = U ) | 
						
							| 62 | 61 | ralrimiva |  |-  ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) -> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) | 
						
							| 63 | 62 | 3adant2 |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) | 
						
							| 64 | 14 15 63 | jca32 |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> ( K e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) | 
						
							| 65 | 1 2 4 3 5 | isdrngo3 |  |-  ( K e. DivRingOps <-> ( K e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) | 
						
							| 66 | 64 65 | sylibr |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. DivRingOps ) | 
						
							| 67 |  | simp1 |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. CRingOps ) | 
						
							| 68 |  | isfld2 |  |-  ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) | 
						
							| 69 | 66 67 68 | sylanbrc |  |-  ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. Fld ) | 
						
							| 70 | 12 69 | impbii |  |-  ( K e. Fld <-> ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) |