Step |
Hyp |
Ref |
Expression |
1 |
|
isfldidl.1 |
|- G = ( 1st ` K ) |
2 |
|
isfldidl.2 |
|- H = ( 2nd ` K ) |
3 |
|
isfldidl.3 |
|- X = ran G |
4 |
|
isfldidl.4 |
|- Z = ( GId ` G ) |
5 |
|
isfldidl.5 |
|- U = ( GId ` H ) |
6 |
|
fldcrng |
|- ( K e. Fld -> K e. CRingOps ) |
7 |
|
flddivrng |
|- ( K e. Fld -> K e. DivRingOps ) |
8 |
1 2 3 4 5
|
dvrunz |
|- ( K e. DivRingOps -> U =/= Z ) |
9 |
7 8
|
syl |
|- ( K e. Fld -> U =/= Z ) |
10 |
1 2 3 4
|
divrngidl |
|- ( K e. DivRingOps -> ( Idl ` K ) = { { Z } , X } ) |
11 |
7 10
|
syl |
|- ( K e. Fld -> ( Idl ` K ) = { { Z } , X } ) |
12 |
6 9 11
|
3jca |
|- ( K e. Fld -> ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) |
13 |
|
crngorngo |
|- ( K e. CRingOps -> K e. RingOps ) |
14 |
13
|
3ad2ant1 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. RingOps ) |
15 |
|
simp2 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> U =/= Z ) |
16 |
1
|
rneqi |
|- ran G = ran ( 1st ` K ) |
17 |
3 16
|
eqtri |
|- X = ran ( 1st ` K ) |
18 |
17 2 5
|
rngo1cl |
|- ( K e. RingOps -> U e. X ) |
19 |
13 18
|
syl |
|- ( K e. CRingOps -> U e. X ) |
20 |
19
|
ad2antrr |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> U e. X ) |
21 |
|
eldif |
|- ( x e. ( X \ { Z } ) <-> ( x e. X /\ -. x e. { Z } ) ) |
22 |
|
snssi |
|- ( x e. X -> { x } C_ X ) |
23 |
1 3
|
igenss |
|- ( ( K e. RingOps /\ { x } C_ X ) -> { x } C_ ( K IdlGen { x } ) ) |
24 |
22 23
|
sylan2 |
|- ( ( K e. RingOps /\ x e. X ) -> { x } C_ ( K IdlGen { x } ) ) |
25 |
|
vex |
|- x e. _V |
26 |
25
|
snss |
|- ( x e. ( K IdlGen { x } ) <-> { x } C_ ( K IdlGen { x } ) ) |
27 |
26
|
biimpri |
|- ( { x } C_ ( K IdlGen { x } ) -> x e. ( K IdlGen { x } ) ) |
28 |
|
eleq2 |
|- ( ( K IdlGen { x } ) = { Z } -> ( x e. ( K IdlGen { x } ) <-> x e. { Z } ) ) |
29 |
27 28
|
syl5ibcom |
|- ( { x } C_ ( K IdlGen { x } ) -> ( ( K IdlGen { x } ) = { Z } -> x e. { Z } ) ) |
30 |
29
|
con3dimp |
|- ( ( { x } C_ ( K IdlGen { x } ) /\ -. x e. { Z } ) -> -. ( K IdlGen { x } ) = { Z } ) |
31 |
24 30
|
sylan |
|- ( ( ( K e. RingOps /\ x e. X ) /\ -. x e. { Z } ) -> -. ( K IdlGen { x } ) = { Z } ) |
32 |
31
|
anasss |
|- ( ( K e. RingOps /\ ( x e. X /\ -. x e. { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) |
33 |
21 32
|
sylan2b |
|- ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) |
34 |
33
|
adantlr |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) |
35 |
|
eldifi |
|- ( x e. ( X \ { Z } ) -> x e. X ) |
36 |
35
|
snssd |
|- ( x e. ( X \ { Z } ) -> { x } C_ X ) |
37 |
1 3
|
igenidl |
|- ( ( K e. RingOps /\ { x } C_ X ) -> ( K IdlGen { x } ) e. ( Idl ` K ) ) |
38 |
36 37
|
sylan2 |
|- ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) e. ( Idl ` K ) ) |
39 |
|
eleq2 |
|- ( ( Idl ` K ) = { { Z } , X } -> ( ( K IdlGen { x } ) e. ( Idl ` K ) <-> ( K IdlGen { x } ) e. { { Z } , X } ) ) |
40 |
38 39
|
syl5ibcom |
|- ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> ( ( Idl ` K ) = { { Z } , X } -> ( K IdlGen { x } ) e. { { Z } , X } ) ) |
41 |
40
|
imp |
|- ( ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) /\ ( Idl ` K ) = { { Z } , X } ) -> ( K IdlGen { x } ) e. { { Z } , X } ) |
42 |
41
|
an32s |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) e. { { Z } , X } ) |
43 |
|
ovex |
|- ( K IdlGen { x } ) e. _V |
44 |
43
|
elpr |
|- ( ( K IdlGen { x } ) e. { { Z } , X } <-> ( ( K IdlGen { x } ) = { Z } \/ ( K IdlGen { x } ) = X ) ) |
45 |
42 44
|
sylib |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( ( K IdlGen { x } ) = { Z } \/ ( K IdlGen { x } ) = X ) ) |
46 |
45
|
ord |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( -. ( K IdlGen { x } ) = { Z } -> ( K IdlGen { x } ) = X ) ) |
47 |
34 46
|
mpd |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = X ) |
48 |
13 47
|
sylanl1 |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = X ) |
49 |
1 2 3
|
prnc |
|- ( ( K e. CRingOps /\ x e. X ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) |
50 |
35 49
|
sylan2 |
|- ( ( K e. CRingOps /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) |
51 |
50
|
adantlr |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) |
52 |
48 51
|
eqtr3d |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> X = { z e. X | E. y e. X z = ( y H x ) } ) |
53 |
20 52
|
eleqtrd |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> U e. { z e. X | E. y e. X z = ( y H x ) } ) |
54 |
|
eqeq1 |
|- ( z = U -> ( z = ( y H x ) <-> U = ( y H x ) ) ) |
55 |
54
|
rexbidv |
|- ( z = U -> ( E. y e. X z = ( y H x ) <-> E. y e. X U = ( y H x ) ) ) |
56 |
55
|
elrab |
|- ( U e. { z e. X | E. y e. X z = ( y H x ) } <-> ( U e. X /\ E. y e. X U = ( y H x ) ) ) |
57 |
53 56
|
sylib |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( U e. X /\ E. y e. X U = ( y H x ) ) ) |
58 |
57
|
simprd |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> E. y e. X U = ( y H x ) ) |
59 |
|
eqcom |
|- ( ( y H x ) = U <-> U = ( y H x ) ) |
60 |
59
|
rexbii |
|- ( E. y e. X ( y H x ) = U <-> E. y e. X U = ( y H x ) ) |
61 |
58 60
|
sylibr |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> E. y e. X ( y H x ) = U ) |
62 |
61
|
ralrimiva |
|- ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) -> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) |
63 |
62
|
3adant2 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) |
64 |
14 15 63
|
jca32 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> ( K e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
65 |
1 2 4 3 5
|
isdrngo3 |
|- ( K e. DivRingOps <-> ( K e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
66 |
64 65
|
sylibr |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. DivRingOps ) |
67 |
|
simp1 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. CRingOps ) |
68 |
|
isfld2 |
|- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |
69 |
66 67 68
|
sylanbrc |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. Fld ) |
70 |
12 69
|
impbii |
|- ( K e. Fld <-> ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) |