| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfldidl.1 |
|- G = ( 1st ` K ) |
| 2 |
|
isfldidl.2 |
|- H = ( 2nd ` K ) |
| 3 |
|
isfldidl.3 |
|- X = ran G |
| 4 |
|
isfldidl.4 |
|- Z = ( GId ` G ) |
| 5 |
|
isfldidl.5 |
|- U = ( GId ` H ) |
| 6 |
|
fldcrngo |
|- ( K e. Fld -> K e. CRingOps ) |
| 7 |
|
flddivrng |
|- ( K e. Fld -> K e. DivRingOps ) |
| 8 |
1 2 3 4 5
|
dvrunz |
|- ( K e. DivRingOps -> U =/= Z ) |
| 9 |
7 8
|
syl |
|- ( K e. Fld -> U =/= Z ) |
| 10 |
1 2 3 4
|
divrngidl |
|- ( K e. DivRingOps -> ( Idl ` K ) = { { Z } , X } ) |
| 11 |
7 10
|
syl |
|- ( K e. Fld -> ( Idl ` K ) = { { Z } , X } ) |
| 12 |
6 9 11
|
3jca |
|- ( K e. Fld -> ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) |
| 13 |
|
crngorngo |
|- ( K e. CRingOps -> K e. RingOps ) |
| 14 |
13
|
3ad2ant1 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. RingOps ) |
| 15 |
|
simp2 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> U =/= Z ) |
| 16 |
1
|
rneqi |
|- ran G = ran ( 1st ` K ) |
| 17 |
3 16
|
eqtri |
|- X = ran ( 1st ` K ) |
| 18 |
17 2 5
|
rngo1cl |
|- ( K e. RingOps -> U e. X ) |
| 19 |
13 18
|
syl |
|- ( K e. CRingOps -> U e. X ) |
| 20 |
19
|
ad2antrr |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> U e. X ) |
| 21 |
|
eldif |
|- ( x e. ( X \ { Z } ) <-> ( x e. X /\ -. x e. { Z } ) ) |
| 22 |
|
snssi |
|- ( x e. X -> { x } C_ X ) |
| 23 |
1 3
|
igenss |
|- ( ( K e. RingOps /\ { x } C_ X ) -> { x } C_ ( K IdlGen { x } ) ) |
| 24 |
22 23
|
sylan2 |
|- ( ( K e. RingOps /\ x e. X ) -> { x } C_ ( K IdlGen { x } ) ) |
| 25 |
|
vex |
|- x e. _V |
| 26 |
25
|
snss |
|- ( x e. ( K IdlGen { x } ) <-> { x } C_ ( K IdlGen { x } ) ) |
| 27 |
26
|
biimpri |
|- ( { x } C_ ( K IdlGen { x } ) -> x e. ( K IdlGen { x } ) ) |
| 28 |
|
eleq2 |
|- ( ( K IdlGen { x } ) = { Z } -> ( x e. ( K IdlGen { x } ) <-> x e. { Z } ) ) |
| 29 |
27 28
|
syl5ibcom |
|- ( { x } C_ ( K IdlGen { x } ) -> ( ( K IdlGen { x } ) = { Z } -> x e. { Z } ) ) |
| 30 |
29
|
con3dimp |
|- ( ( { x } C_ ( K IdlGen { x } ) /\ -. x e. { Z } ) -> -. ( K IdlGen { x } ) = { Z } ) |
| 31 |
24 30
|
sylan |
|- ( ( ( K e. RingOps /\ x e. X ) /\ -. x e. { Z } ) -> -. ( K IdlGen { x } ) = { Z } ) |
| 32 |
31
|
anasss |
|- ( ( K e. RingOps /\ ( x e. X /\ -. x e. { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) |
| 33 |
21 32
|
sylan2b |
|- ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) |
| 34 |
33
|
adantlr |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> -. ( K IdlGen { x } ) = { Z } ) |
| 35 |
|
eldifi |
|- ( x e. ( X \ { Z } ) -> x e. X ) |
| 36 |
35
|
snssd |
|- ( x e. ( X \ { Z } ) -> { x } C_ X ) |
| 37 |
1 3
|
igenidl |
|- ( ( K e. RingOps /\ { x } C_ X ) -> ( K IdlGen { x } ) e. ( Idl ` K ) ) |
| 38 |
36 37
|
sylan2 |
|- ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) e. ( Idl ` K ) ) |
| 39 |
|
eleq2 |
|- ( ( Idl ` K ) = { { Z } , X } -> ( ( K IdlGen { x } ) e. ( Idl ` K ) <-> ( K IdlGen { x } ) e. { { Z } , X } ) ) |
| 40 |
38 39
|
syl5ibcom |
|- ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) -> ( ( Idl ` K ) = { { Z } , X } -> ( K IdlGen { x } ) e. { { Z } , X } ) ) |
| 41 |
40
|
imp |
|- ( ( ( K e. RingOps /\ x e. ( X \ { Z } ) ) /\ ( Idl ` K ) = { { Z } , X } ) -> ( K IdlGen { x } ) e. { { Z } , X } ) |
| 42 |
41
|
an32s |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) e. { { Z } , X } ) |
| 43 |
|
ovex |
|- ( K IdlGen { x } ) e. _V |
| 44 |
43
|
elpr |
|- ( ( K IdlGen { x } ) e. { { Z } , X } <-> ( ( K IdlGen { x } ) = { Z } \/ ( K IdlGen { x } ) = X ) ) |
| 45 |
42 44
|
sylib |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( ( K IdlGen { x } ) = { Z } \/ ( K IdlGen { x } ) = X ) ) |
| 46 |
45
|
ord |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( -. ( K IdlGen { x } ) = { Z } -> ( K IdlGen { x } ) = X ) ) |
| 47 |
34 46
|
mpd |
|- ( ( ( K e. RingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = X ) |
| 48 |
13 47
|
sylanl1 |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = X ) |
| 49 |
1 2 3
|
prnc |
|- ( ( K e. CRingOps /\ x e. X ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) |
| 50 |
35 49
|
sylan2 |
|- ( ( K e. CRingOps /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) |
| 51 |
50
|
adantlr |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( K IdlGen { x } ) = { z e. X | E. y e. X z = ( y H x ) } ) |
| 52 |
48 51
|
eqtr3d |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> X = { z e. X | E. y e. X z = ( y H x ) } ) |
| 53 |
20 52
|
eleqtrd |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> U e. { z e. X | E. y e. X z = ( y H x ) } ) |
| 54 |
|
eqeq1 |
|- ( z = U -> ( z = ( y H x ) <-> U = ( y H x ) ) ) |
| 55 |
54
|
rexbidv |
|- ( z = U -> ( E. y e. X z = ( y H x ) <-> E. y e. X U = ( y H x ) ) ) |
| 56 |
55
|
elrab |
|- ( U e. { z e. X | E. y e. X z = ( y H x ) } <-> ( U e. X /\ E. y e. X U = ( y H x ) ) ) |
| 57 |
53 56
|
sylib |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> ( U e. X /\ E. y e. X U = ( y H x ) ) ) |
| 58 |
57
|
simprd |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> E. y e. X U = ( y H x ) ) |
| 59 |
|
eqcom |
|- ( ( y H x ) = U <-> U = ( y H x ) ) |
| 60 |
59
|
rexbii |
|- ( E. y e. X ( y H x ) = U <-> E. y e. X U = ( y H x ) ) |
| 61 |
58 60
|
sylibr |
|- ( ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) /\ x e. ( X \ { Z } ) ) -> E. y e. X ( y H x ) = U ) |
| 62 |
61
|
ralrimiva |
|- ( ( K e. CRingOps /\ ( Idl ` K ) = { { Z } , X } ) -> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) |
| 63 |
62
|
3adant2 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) |
| 64 |
14 15 63
|
jca32 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> ( K e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| 65 |
1 2 4 3 5
|
isdrngo3 |
|- ( K e. DivRingOps <-> ( K e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| 66 |
64 65
|
sylibr |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. DivRingOps ) |
| 67 |
|
simp1 |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. CRingOps ) |
| 68 |
|
isfld2 |
|- ( K e. Fld <-> ( K e. DivRingOps /\ K e. CRingOps ) ) |
| 69 |
66 67 68
|
sylanbrc |
|- ( ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) -> K e. Fld ) |
| 70 |
12 69
|
impbii |
|- ( K e. Fld <-> ( K e. CRingOps /\ U =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) |