Metamath Proof Explorer


Theorem isfldidl2

Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses isfldidl2.1
|- G = ( 1st ` K )
isfldidl2.2
|- H = ( 2nd ` K )
isfldidl2.3
|- X = ran G
isfldidl2.4
|- Z = ( GId ` G )
Assertion isfldidl2
|- ( K e. Fld <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) )

Proof

Step Hyp Ref Expression
1 isfldidl2.1
 |-  G = ( 1st ` K )
2 isfldidl2.2
 |-  H = ( 2nd ` K )
3 isfldidl2.3
 |-  X = ran G
4 isfldidl2.4
 |-  Z = ( GId ` G )
5 eqid
 |-  ( GId ` H ) = ( GId ` H )
6 1 2 3 4 5 isfldidl
 |-  ( K e. Fld <-> ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) )
7 crngorngo
 |-  ( K e. CRingOps -> K e. RingOps )
8 eqcom
 |-  ( ( GId ` H ) = Z <-> Z = ( GId ` H ) )
9 1 2 3 4 5 0rngo
 |-  ( K e. RingOps -> ( Z = ( GId ` H ) <-> X = { Z } ) )
10 8 9 syl5bb
 |-  ( K e. RingOps -> ( ( GId ` H ) = Z <-> X = { Z } ) )
11 7 10 syl
 |-  ( K e. CRingOps -> ( ( GId ` H ) = Z <-> X = { Z } ) )
12 11 necon3bid
 |-  ( K e. CRingOps -> ( ( GId ` H ) =/= Z <-> X =/= { Z } ) )
13 12 anbi1d
 |-  ( K e. CRingOps -> ( ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) )
14 13 pm5.32i
 |-  ( ( K e. CRingOps /\ ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) <-> ( K e. CRingOps /\ ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) )
15 3anass
 |-  ( ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) )
16 3anass
 |-  ( ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) )
17 14 15 16 3bitr4i
 |-  ( ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) )
18 6 17 bitri
 |-  ( K e. Fld <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) )