| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfldidl2.1 |  |-  G = ( 1st ` K ) | 
						
							| 2 |  | isfldidl2.2 |  |-  H = ( 2nd ` K ) | 
						
							| 3 |  | isfldidl2.3 |  |-  X = ran G | 
						
							| 4 |  | isfldidl2.4 |  |-  Z = ( GId ` G ) | 
						
							| 5 |  | eqid |  |-  ( GId ` H ) = ( GId ` H ) | 
						
							| 6 | 1 2 3 4 5 | isfldidl |  |-  ( K e. Fld <-> ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) | 
						
							| 7 |  | crngorngo |  |-  ( K e. CRingOps -> K e. RingOps ) | 
						
							| 8 |  | eqcom |  |-  ( ( GId ` H ) = Z <-> Z = ( GId ` H ) ) | 
						
							| 9 | 1 2 3 4 5 | 0rngo |  |-  ( K e. RingOps -> ( Z = ( GId ` H ) <-> X = { Z } ) ) | 
						
							| 10 | 8 9 | bitrid |  |-  ( K e. RingOps -> ( ( GId ` H ) = Z <-> X = { Z } ) ) | 
						
							| 11 | 7 10 | syl |  |-  ( K e. CRingOps -> ( ( GId ` H ) = Z <-> X = { Z } ) ) | 
						
							| 12 | 11 | necon3bid |  |-  ( K e. CRingOps -> ( ( GId ` H ) =/= Z <-> X =/= { Z } ) ) | 
						
							| 13 | 12 | anbi1d |  |-  ( K e. CRingOps -> ( ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) ) | 
						
							| 14 | 13 | pm5.32i |  |-  ( ( K e. CRingOps /\ ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) <-> ( K e. CRingOps /\ ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) ) | 
						
							| 15 |  | 3anass |  |-  ( ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) ) | 
						
							| 16 |  | 3anass |  |-  ( ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) ) | 
						
							| 17 | 14 15 16 | 3bitr4i |  |-  ( ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) | 
						
							| 18 | 6 17 | bitri |  |-  ( K e. Fld <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) |