| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfldidl2.1 |
|- G = ( 1st ` K ) |
| 2 |
|
isfldidl2.2 |
|- H = ( 2nd ` K ) |
| 3 |
|
isfldidl2.3 |
|- X = ran G |
| 4 |
|
isfldidl2.4 |
|- Z = ( GId ` G ) |
| 5 |
|
eqid |
|- ( GId ` H ) = ( GId ` H ) |
| 6 |
1 2 3 4 5
|
isfldidl |
|- ( K e. Fld <-> ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) |
| 7 |
|
crngorngo |
|- ( K e. CRingOps -> K e. RingOps ) |
| 8 |
|
eqcom |
|- ( ( GId ` H ) = Z <-> Z = ( GId ` H ) ) |
| 9 |
1 2 3 4 5
|
0rngo |
|- ( K e. RingOps -> ( Z = ( GId ` H ) <-> X = { Z } ) ) |
| 10 |
8 9
|
bitrid |
|- ( K e. RingOps -> ( ( GId ` H ) = Z <-> X = { Z } ) ) |
| 11 |
7 10
|
syl |
|- ( K e. CRingOps -> ( ( GId ` H ) = Z <-> X = { Z } ) ) |
| 12 |
11
|
necon3bid |
|- ( K e. CRingOps -> ( ( GId ` H ) =/= Z <-> X =/= { Z } ) ) |
| 13 |
12
|
anbi1d |
|- ( K e. CRingOps -> ( ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) ) |
| 14 |
13
|
pm5.32i |
|- ( ( K e. CRingOps /\ ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) <-> ( K e. CRingOps /\ ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) ) |
| 15 |
|
3anass |
|- ( ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ ( ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) ) ) |
| 16 |
|
3anass |
|- ( ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ ( X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) ) |
| 17 |
14 15 16
|
3bitr4i |
|- ( ( K e. CRingOps /\ ( GId ` H ) =/= Z /\ ( Idl ` K ) = { { Z } , X } ) <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) |
| 18 |
6 17
|
bitri |
|- ( K e. Fld <-> ( K e. CRingOps /\ X =/= { Z } /\ ( Idl ` K ) = { { Z } , X } ) ) |