Metamath Proof Explorer


Theorem isfldidl2

Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses isfldidl2.1 G=1stK
isfldidl2.2 H=2ndK
isfldidl2.3 X=ranG
isfldidl2.4 Z=GIdG
Assertion isfldidl2 KFldKCRingOpsXZIdlK=ZX

Proof

Step Hyp Ref Expression
1 isfldidl2.1 G=1stK
2 isfldidl2.2 H=2ndK
3 isfldidl2.3 X=ranG
4 isfldidl2.4 Z=GIdG
5 eqid GIdH=GIdH
6 1 2 3 4 5 isfldidl KFldKCRingOpsGIdHZIdlK=ZX
7 crngorngo KCRingOpsKRingOps
8 eqcom GIdH=ZZ=GIdH
9 1 2 3 4 5 0rngo KRingOpsZ=GIdHX=Z
10 8 9 bitrid KRingOpsGIdH=ZX=Z
11 7 10 syl KCRingOpsGIdH=ZX=Z
12 11 necon3bid KCRingOpsGIdHZXZ
13 12 anbi1d KCRingOpsGIdHZIdlK=ZXXZIdlK=ZX
14 13 pm5.32i KCRingOpsGIdHZIdlK=ZXKCRingOpsXZIdlK=ZX
15 3anass KCRingOpsGIdHZIdlK=ZXKCRingOpsGIdHZIdlK=ZX
16 3anass KCRingOpsXZIdlK=ZXKCRingOpsXZIdlK=ZX
17 14 15 16 3bitr4i KCRingOpsGIdHZIdlK=ZXKCRingOpsXZIdlK=ZX
18 6 17 bitri KFldKCRingOpsXZIdlK=ZX