Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isfldidl2.1 | |
|
isfldidl2.2 | |
||
isfldidl2.3 | |
||
isfldidl2.4 | |
||
Assertion | isfldidl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isfldidl2.1 | |
|
2 | isfldidl2.2 | |
|
3 | isfldidl2.3 | |
|
4 | isfldidl2.4 | |
|
5 | eqid | |
|
6 | 1 2 3 4 5 | isfldidl | |
7 | crngorngo | |
|
8 | eqcom | |
|
9 | 1 2 3 4 5 | 0rngo | |
10 | 8 9 | bitrid | |
11 | 7 10 | syl | |
12 | 11 | necon3bid | |
13 | 12 | anbi1d | |
14 | 13 | pm5.32i | |
15 | 3anass | |
|
16 | 3anass | |
|
17 | 14 15 16 | 3bitr4i | |
18 | 6 17 | bitri | |