Metamath Proof Explorer


Theorem isfldidl2

Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses isfldidl2.1 G = 1 st K
isfldidl2.2 H = 2 nd K
isfldidl2.3 X = ran G
isfldidl2.4 Z = GId G
Assertion isfldidl2 K Fld K CRingOps X Z Idl K = Z X

Proof

Step Hyp Ref Expression
1 isfldidl2.1 G = 1 st K
2 isfldidl2.2 H = 2 nd K
3 isfldidl2.3 X = ran G
4 isfldidl2.4 Z = GId G
5 eqid GId H = GId H
6 1 2 3 4 5 isfldidl K Fld K CRingOps GId H Z Idl K = Z X
7 crngorngo K CRingOps K RingOps
8 eqcom GId H = Z Z = GId H
9 1 2 3 4 5 0rngo K RingOps Z = GId H X = Z
10 8 9 syl5bb K RingOps GId H = Z X = Z
11 7 10 syl K CRingOps GId H = Z X = Z
12 11 necon3bid K CRingOps GId H Z X Z
13 12 anbi1d K CRingOps GId H Z Idl K = Z X X Z Idl K = Z X
14 13 pm5.32i K CRingOps GId H Z Idl K = Z X K CRingOps X Z Idl K = Z X
15 3anass K CRingOps GId H Z Idl K = Z X K CRingOps GId H Z Idl K = Z X
16 3anass K CRingOps X Z Idl K = Z X K CRingOps X Z Idl K = Z X
17 14 15 16 3bitr4i K CRingOps GId H Z Idl K = Z X K CRingOps X Z Idl K = Z X
18 6 17 bitri K Fld K CRingOps X Z Idl K = Z X