| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isfldidl2.1 | ⊢ 𝐺  =  ( 1st  ‘ 𝐾 ) | 
						
							| 2 |  | isfldidl2.2 | ⊢ 𝐻  =  ( 2nd  ‘ 𝐾 ) | 
						
							| 3 |  | isfldidl2.3 | ⊢ 𝑋  =  ran  𝐺 | 
						
							| 4 |  | isfldidl2.4 | ⊢ 𝑍  =  ( GId ‘ 𝐺 ) | 
						
							| 5 |  | eqid | ⊢ ( GId ‘ 𝐻 )  =  ( GId ‘ 𝐻 ) | 
						
							| 6 | 1 2 3 4 5 | isfldidl | ⊢ ( 𝐾  ∈  Fld  ↔  ( 𝐾  ∈  CRingOps  ∧  ( GId ‘ 𝐻 )  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) | 
						
							| 7 |  | crngorngo | ⊢ ( 𝐾  ∈  CRingOps  →  𝐾  ∈  RingOps ) | 
						
							| 8 |  | eqcom | ⊢ ( ( GId ‘ 𝐻 )  =  𝑍  ↔  𝑍  =  ( GId ‘ 𝐻 ) ) | 
						
							| 9 | 1 2 3 4 5 | 0rngo | ⊢ ( 𝐾  ∈  RingOps  →  ( 𝑍  =  ( GId ‘ 𝐻 )  ↔  𝑋  =  { 𝑍 } ) ) | 
						
							| 10 | 8 9 | bitrid | ⊢ ( 𝐾  ∈  RingOps  →  ( ( GId ‘ 𝐻 )  =  𝑍  ↔  𝑋  =  { 𝑍 } ) ) | 
						
							| 11 | 7 10 | syl | ⊢ ( 𝐾  ∈  CRingOps  →  ( ( GId ‘ 𝐻 )  =  𝑍  ↔  𝑋  =  { 𝑍 } ) ) | 
						
							| 12 | 11 | necon3bid | ⊢ ( 𝐾  ∈  CRingOps  →  ( ( GId ‘ 𝐻 )  ≠  𝑍  ↔  𝑋  ≠  { 𝑍 } ) ) | 
						
							| 13 | 12 | anbi1d | ⊢ ( 𝐾  ∈  CRingOps  →  ( ( ( GId ‘ 𝐻 )  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ↔  ( 𝑋  ≠  { 𝑍 }  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) ) | 
						
							| 14 | 13 | pm5.32i | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  ( ( GId ‘ 𝐻 )  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) )  ↔  ( 𝐾  ∈  CRingOps  ∧  ( 𝑋  ≠  { 𝑍 }  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) ) | 
						
							| 15 |  | 3anass | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  ( GId ‘ 𝐻 )  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ↔  ( 𝐾  ∈  CRingOps  ∧  ( ( GId ‘ 𝐻 )  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) ) | 
						
							| 16 |  | 3anass | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  𝑋  ≠  { 𝑍 }  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ↔  ( 𝐾  ∈  CRingOps  ∧  ( 𝑋  ≠  { 𝑍 }  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) ) | 
						
							| 17 | 14 15 16 | 3bitr4i | ⊢ ( ( 𝐾  ∈  CRingOps  ∧  ( GId ‘ 𝐻 )  ≠  𝑍  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } )  ↔  ( 𝐾  ∈  CRingOps  ∧  𝑋  ≠  { 𝑍 }  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) | 
						
							| 18 | 6 17 | bitri | ⊢ ( 𝐾  ∈  Fld  ↔  ( 𝐾  ∈  CRingOps  ∧  𝑋  ≠  { 𝑍 }  ∧  ( Idl ‘ 𝐾 )  =  { { 𝑍 } ,  𝑋 } ) ) |