| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isfldidl2.1 |
⊢ 𝐺 = ( 1st ‘ 𝐾 ) |
| 2 |
|
isfldidl2.2 |
⊢ 𝐻 = ( 2nd ‘ 𝐾 ) |
| 3 |
|
isfldidl2.3 |
⊢ 𝑋 = ran 𝐺 |
| 4 |
|
isfldidl2.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 5 |
|
eqid |
⊢ ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 ) |
| 6 |
1 2 3 4 5
|
isfldidl |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |
| 7 |
|
crngorngo |
⊢ ( 𝐾 ∈ CRingOps → 𝐾 ∈ RingOps ) |
| 8 |
|
eqcom |
⊢ ( ( GId ‘ 𝐻 ) = 𝑍 ↔ 𝑍 = ( GId ‘ 𝐻 ) ) |
| 9 |
1 2 3 4 5
|
0rngo |
⊢ ( 𝐾 ∈ RingOps → ( 𝑍 = ( GId ‘ 𝐻 ) ↔ 𝑋 = { 𝑍 } ) ) |
| 10 |
8 9
|
bitrid |
⊢ ( 𝐾 ∈ RingOps → ( ( GId ‘ 𝐻 ) = 𝑍 ↔ 𝑋 = { 𝑍 } ) ) |
| 11 |
7 10
|
syl |
⊢ ( 𝐾 ∈ CRingOps → ( ( GId ‘ 𝐻 ) = 𝑍 ↔ 𝑋 = { 𝑍 } ) ) |
| 12 |
11
|
necon3bid |
⊢ ( 𝐾 ∈ CRingOps → ( ( GId ‘ 𝐻 ) ≠ 𝑍 ↔ 𝑋 ≠ { 𝑍 } ) ) |
| 13 |
12
|
anbi1d |
⊢ ( 𝐾 ∈ CRingOps → ( ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
| 14 |
13
|
pm5.32i |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ↔ ( 𝐾 ∈ CRingOps ∧ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
| 15 |
|
3anass |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
| 16 |
|
3anass |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
| 17 |
14 15 16
|
3bitr4i |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |
| 18 |
6 17
|
bitri |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |