Step |
Hyp |
Ref |
Expression |
1 |
|
isfldidl2.1 |
⊢ 𝐺 = ( 1st ‘ 𝐾 ) |
2 |
|
isfldidl2.2 |
⊢ 𝐻 = ( 2nd ‘ 𝐾 ) |
3 |
|
isfldidl2.3 |
⊢ 𝑋 = ran 𝐺 |
4 |
|
isfldidl2.4 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
5 |
|
eqid |
⊢ ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 ) |
6 |
1 2 3 4 5
|
isfldidl |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |
7 |
|
crngorngo |
⊢ ( 𝐾 ∈ CRingOps → 𝐾 ∈ RingOps ) |
8 |
|
eqcom |
⊢ ( ( GId ‘ 𝐻 ) = 𝑍 ↔ 𝑍 = ( GId ‘ 𝐻 ) ) |
9 |
1 2 3 4 5
|
0rngo |
⊢ ( 𝐾 ∈ RingOps → ( 𝑍 = ( GId ‘ 𝐻 ) ↔ 𝑋 = { 𝑍 } ) ) |
10 |
8 9
|
syl5bb |
⊢ ( 𝐾 ∈ RingOps → ( ( GId ‘ 𝐻 ) = 𝑍 ↔ 𝑋 = { 𝑍 } ) ) |
11 |
7 10
|
syl |
⊢ ( 𝐾 ∈ CRingOps → ( ( GId ‘ 𝐻 ) = 𝑍 ↔ 𝑋 = { 𝑍 } ) ) |
12 |
11
|
necon3bid |
⊢ ( 𝐾 ∈ CRingOps → ( ( GId ‘ 𝐻 ) ≠ 𝑍 ↔ 𝑋 ≠ { 𝑍 } ) ) |
13 |
12
|
anbi1d |
⊢ ( 𝐾 ∈ CRingOps → ( ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
14 |
13
|
pm5.32i |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ↔ ( 𝐾 ∈ CRingOps ∧ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
15 |
|
3anass |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
16 |
|
3anass |
⊢ ( ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ) |
17 |
14 15 16
|
3bitr4i |
⊢ ( ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |
18 |
6 17
|
bitri |
⊢ ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) |