Metamath Proof Explorer


Theorem isfldidl2

Description: Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011)

Ref Expression
Hypotheses isfldidl2.1 𝐺 = ( 1st𝐾 )
isfldidl2.2 𝐻 = ( 2nd𝐾 )
isfldidl2.3 𝑋 = ran 𝐺
isfldidl2.4 𝑍 = ( GId ‘ 𝐺 )
Assertion isfldidl2 ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 isfldidl2.1 𝐺 = ( 1st𝐾 )
2 isfldidl2.2 𝐻 = ( 2nd𝐾 )
3 isfldidl2.3 𝑋 = ran 𝐺
4 isfldidl2.4 𝑍 = ( GId ‘ 𝐺 )
5 eqid ( GId ‘ 𝐻 ) = ( GId ‘ 𝐻 )
6 1 2 3 4 5 isfldidl ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) )
7 crngorngo ( 𝐾 ∈ CRingOps → 𝐾 ∈ RingOps )
8 eqcom ( ( GId ‘ 𝐻 ) = 𝑍𝑍 = ( GId ‘ 𝐻 ) )
9 1 2 3 4 5 0rngo ( 𝐾 ∈ RingOps → ( 𝑍 = ( GId ‘ 𝐻 ) ↔ 𝑋 = { 𝑍 } ) )
10 8 9 syl5bb ( 𝐾 ∈ RingOps → ( ( GId ‘ 𝐻 ) = 𝑍𝑋 = { 𝑍 } ) )
11 7 10 syl ( 𝐾 ∈ CRingOps → ( ( GId ‘ 𝐻 ) = 𝑍𝑋 = { 𝑍 } ) )
12 11 necon3bid ( 𝐾 ∈ CRingOps → ( ( GId ‘ 𝐻 ) ≠ 𝑍𝑋 ≠ { 𝑍 } ) )
13 12 anbi1d ( 𝐾 ∈ CRingOps → ( ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) )
14 13 pm5.32i ( ( 𝐾 ∈ CRingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) ↔ ( 𝐾 ∈ CRingOps ∧ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) )
15 3anass ( ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ ( ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) )
16 3anass ( ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ ( 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ) )
17 14 15 16 3bitr4i ( ( 𝐾 ∈ CRingOps ∧ ( GId ‘ 𝐻 ) ≠ 𝑍 ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) )
18 6 17 bitri ( 𝐾 ∈ Fld ↔ ( 𝐾 ∈ CRingOps ∧ 𝑋 ≠ { 𝑍 } ∧ ( Idl ‘ 𝐾 ) = { { 𝑍 } , 𝑋 } ) )