| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdivrng1.1 |
|- G = ( 1st ` R ) |
| 2 |
|
isdivrng1.2 |
|- H = ( 2nd ` R ) |
| 3 |
|
isdivrng1.3 |
|- Z = ( GId ` G ) |
| 4 |
|
isdivrng1.4 |
|- X = ran G |
| 5 |
|
isdivrng2.5 |
|- U = ( GId ` H ) |
| 6 |
1 2 3 4 5
|
isdrngo2 |
|- ( R e. DivRingOps <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U ) ) ) |
| 7 |
|
eldifi |
|- ( x e. ( X \ { Z } ) -> x e. X ) |
| 8 |
|
difss |
|- ( X \ { Z } ) C_ X |
| 9 |
|
ssrexv |
|- ( ( X \ { Z } ) C_ X -> ( E. y e. ( X \ { Z } ) ( y H x ) = U -> E. y e. X ( y H x ) = U ) ) |
| 10 |
8 9
|
ax-mp |
|- ( E. y e. ( X \ { Z } ) ( y H x ) = U -> E. y e. X ( y H x ) = U ) |
| 11 |
|
neeq1 |
|- ( ( y H x ) = U -> ( ( y H x ) =/= Z <-> U =/= Z ) ) |
| 12 |
11
|
biimparc |
|- ( ( U =/= Z /\ ( y H x ) = U ) -> ( y H x ) =/= Z ) |
| 13 |
3 4 1 2
|
rngolz |
|- ( ( R e. RingOps /\ x e. X ) -> ( Z H x ) = Z ) |
| 14 |
|
oveq1 |
|- ( y = Z -> ( y H x ) = ( Z H x ) ) |
| 15 |
14
|
eqeq1d |
|- ( y = Z -> ( ( y H x ) = Z <-> ( Z H x ) = Z ) ) |
| 16 |
13 15
|
syl5ibrcom |
|- ( ( R e. RingOps /\ x e. X ) -> ( y = Z -> ( y H x ) = Z ) ) |
| 17 |
16
|
necon3d |
|- ( ( R e. RingOps /\ x e. X ) -> ( ( y H x ) =/= Z -> y =/= Z ) ) |
| 18 |
17
|
imp |
|- ( ( ( R e. RingOps /\ x e. X ) /\ ( y H x ) =/= Z ) -> y =/= Z ) |
| 19 |
12 18
|
sylan2 |
|- ( ( ( R e. RingOps /\ x e. X ) /\ ( U =/= Z /\ ( y H x ) = U ) ) -> y =/= Z ) |
| 20 |
19
|
an4s |
|- ( ( ( R e. RingOps /\ U =/= Z ) /\ ( x e. X /\ ( y H x ) = U ) ) -> y =/= Z ) |
| 21 |
20
|
anassrs |
|- ( ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) /\ ( y H x ) = U ) -> y =/= Z ) |
| 22 |
|
pm3.2 |
|- ( y e. X -> ( y =/= Z -> ( y e. X /\ y =/= Z ) ) ) |
| 23 |
21 22
|
syl5com |
|- ( ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) /\ ( y H x ) = U ) -> ( y e. X -> ( y e. X /\ y =/= Z ) ) ) |
| 24 |
|
eldifsn |
|- ( y e. ( X \ { Z } ) <-> ( y e. X /\ y =/= Z ) ) |
| 25 |
23 24
|
imbitrrdi |
|- ( ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) /\ ( y H x ) = U ) -> ( y e. X -> y e. ( X \ { Z } ) ) ) |
| 26 |
25
|
imdistanda |
|- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( ( ( y H x ) = U /\ y e. X ) -> ( ( y H x ) = U /\ y e. ( X \ { Z } ) ) ) ) |
| 27 |
|
ancom |
|- ( ( y e. X /\ ( y H x ) = U ) <-> ( ( y H x ) = U /\ y e. X ) ) |
| 28 |
|
ancom |
|- ( ( y e. ( X \ { Z } ) /\ ( y H x ) = U ) <-> ( ( y H x ) = U /\ y e. ( X \ { Z } ) ) ) |
| 29 |
26 27 28
|
3imtr4g |
|- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( ( y e. X /\ ( y H x ) = U ) -> ( y e. ( X \ { Z } ) /\ ( y H x ) = U ) ) ) |
| 30 |
29
|
reximdv2 |
|- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( E. y e. X ( y H x ) = U -> E. y e. ( X \ { Z } ) ( y H x ) = U ) ) |
| 31 |
10 30
|
impbid2 |
|- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. X ) -> ( E. y e. ( X \ { Z } ) ( y H x ) = U <-> E. y e. X ( y H x ) = U ) ) |
| 32 |
7 31
|
sylan2 |
|- ( ( ( R e. RingOps /\ U =/= Z ) /\ x e. ( X \ { Z } ) ) -> ( E. y e. ( X \ { Z } ) ( y H x ) = U <-> E. y e. X ( y H x ) = U ) ) |
| 33 |
32
|
ralbidva |
|- ( ( R e. RingOps /\ U =/= Z ) -> ( A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U <-> A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) |
| 34 |
33
|
pm5.32da |
|- ( R e. RingOps -> ( ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U ) <-> ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| 35 |
34
|
pm5.32i |
|- ( ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. ( X \ { Z } ) ( y H x ) = U ) ) <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |
| 36 |
6 35
|
bitri |
|- ( R e. DivRingOps <-> ( R e. RingOps /\ ( U =/= Z /\ A. x e. ( X \ { Z } ) E. y e. X ( y H x ) = U ) ) ) |