Metamath Proof Explorer


Theorem isdrngo3

Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Hypotheses isdivrng1.1 G=1stR
isdivrng1.2 H=2ndR
isdivrng1.3 Z=GIdG
isdivrng1.4 X=ranG
isdivrng2.5 U=GIdH
Assertion isdrngo3 RDivRingOpsRRingOpsUZxXZyXyHx=U

Proof

Step Hyp Ref Expression
1 isdivrng1.1 G=1stR
2 isdivrng1.2 H=2ndR
3 isdivrng1.3 Z=GIdG
4 isdivrng1.4 X=ranG
5 isdivrng2.5 U=GIdH
6 1 2 3 4 5 isdrngo2 RDivRingOpsRRingOpsUZxXZyXZyHx=U
7 eldifi xXZxX
8 difss XZX
9 ssrexv XZXyXZyHx=UyXyHx=U
10 8 9 ax-mp yXZyHx=UyXyHx=U
11 neeq1 yHx=UyHxZUZ
12 11 biimparc UZyHx=UyHxZ
13 3 4 1 2 rngolz RRingOpsxXZHx=Z
14 oveq1 y=ZyHx=ZHx
15 14 eqeq1d y=ZyHx=ZZHx=Z
16 13 15 syl5ibrcom RRingOpsxXy=ZyHx=Z
17 16 necon3d RRingOpsxXyHxZyZ
18 17 imp RRingOpsxXyHxZyZ
19 12 18 sylan2 RRingOpsxXUZyHx=UyZ
20 19 an4s RRingOpsUZxXyHx=UyZ
21 20 anassrs RRingOpsUZxXyHx=UyZ
22 pm3.2 yXyZyXyZ
23 21 22 syl5com RRingOpsUZxXyHx=UyXyXyZ
24 eldifsn yXZyXyZ
25 23 24 syl6ibr RRingOpsUZxXyHx=UyXyXZ
26 25 imdistanda RRingOpsUZxXyHx=UyXyHx=UyXZ
27 ancom yXyHx=UyHx=UyX
28 ancom yXZyHx=UyHx=UyXZ
29 26 27 28 3imtr4g RRingOpsUZxXyXyHx=UyXZyHx=U
30 29 reximdv2 RRingOpsUZxXyXyHx=UyXZyHx=U
31 10 30 impbid2 RRingOpsUZxXyXZyHx=UyXyHx=U
32 7 31 sylan2 RRingOpsUZxXZyXZyHx=UyXyHx=U
33 32 ralbidva RRingOpsUZxXZyXZyHx=UxXZyXyHx=U
34 33 pm5.32da RRingOpsUZxXZyXZyHx=UUZxXZyXyHx=U
35 34 pm5.32i RRingOpsUZxXZyXZyHx=URRingOpsUZxXZyXyHx=U
36 6 35 bitri RDivRingOpsRRingOpsUZxXZyXyHx=U