Description: A division ring is a ring in which 1 =/= 0 and every nonzero element is invertible. (Contributed by Jeff Madsen, 10-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | isdivrng1.1 | |
|
isdivrng1.2 | |
||
isdivrng1.3 | |
||
isdivrng1.4 | |
||
isdivrng2.5 | |
||
Assertion | isdrngo3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isdivrng1.1 | |
|
2 | isdivrng1.2 | |
|
3 | isdivrng1.3 | |
|
4 | isdivrng1.4 | |
|
5 | isdivrng2.5 | |
|
6 | 1 2 3 4 5 | isdrngo2 | |
7 | eldifi | |
|
8 | difss | |
|
9 | ssrexv | |
|
10 | 8 9 | ax-mp | |
11 | neeq1 | |
|
12 | 11 | biimparc | |
13 | 3 4 1 2 | rngolz | |
14 | oveq1 | |
|
15 | 14 | eqeq1d | |
16 | 13 15 | syl5ibrcom | |
17 | 16 | necon3d | |
18 | 17 | imp | |
19 | 12 18 | sylan2 | |
20 | 19 | an4s | |
21 | 20 | anassrs | |
22 | pm3.2 | |
|
23 | 21 22 | syl5com | |
24 | eldifsn | |
|
25 | 23 24 | syl6ibr | |
26 | 25 | imdistanda | |
27 | ancom | |
|
28 | ancom | |
|
29 | 26 27 28 | 3imtr4g | |
30 | 29 | reximdv2 | |
31 | 10 30 | impbid2 | |
32 | 7 31 | sylan2 | |
33 | 32 | ralbidva | |
34 | 33 | pm5.32da | |
35 | 34 | pm5.32i | |
36 | 6 35 | bitri | |