| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isdivrng1.1 |
⊢ 𝐺 = ( 1st ‘ 𝑅 ) |
| 2 |
|
isdivrng1.2 |
⊢ 𝐻 = ( 2nd ‘ 𝑅 ) |
| 3 |
|
isdivrng1.3 |
⊢ 𝑍 = ( GId ‘ 𝐺 ) |
| 4 |
|
isdivrng1.4 |
⊢ 𝑋 = ran 𝐺 |
| 5 |
|
isdivrng2.5 |
⊢ 𝑈 = ( GId ‘ 𝐻 ) |
| 6 |
1 2 3 4 5
|
isdrngo2 |
⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 7 |
|
eldifi |
⊢ ( 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) → 𝑥 ∈ 𝑋 ) |
| 8 |
|
difss |
⊢ ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 |
| 9 |
|
ssrexv |
⊢ ( ( 𝑋 ∖ { 𝑍 } ) ⊆ 𝑋 → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 10 |
8 9
|
ax-mp |
⊢ ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 → ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) |
| 11 |
|
neeq1 |
⊢ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 → ( ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 ↔ 𝑈 ≠ 𝑍 ) ) |
| 12 |
11
|
biimparc |
⊢ ( ( 𝑈 ≠ 𝑍 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 ) |
| 13 |
3 4 1 2
|
rngolz |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑍 𝐻 𝑥 ) = 𝑍 ) |
| 14 |
|
oveq1 |
⊢ ( 𝑦 = 𝑍 → ( 𝑦 𝐻 𝑥 ) = ( 𝑍 𝐻 𝑥 ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑦 = 𝑍 → ( ( 𝑦 𝐻 𝑥 ) = 𝑍 ↔ ( 𝑍 𝐻 𝑥 ) = 𝑍 ) ) |
| 16 |
13 15
|
syl5ibrcom |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( 𝑦 = 𝑍 → ( 𝑦 𝐻 𝑥 ) = 𝑍 ) ) |
| 17 |
16
|
necon3d |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 → 𝑦 ≠ 𝑍 ) ) |
| 18 |
17
|
imp |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) ≠ 𝑍 ) → 𝑦 ≠ 𝑍 ) |
| 19 |
12 18
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑈 ≠ 𝑍 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) → 𝑦 ≠ 𝑍 ) |
| 20 |
19
|
an4s |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) → 𝑦 ≠ 𝑍 ) |
| 21 |
20
|
anassrs |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → 𝑦 ≠ 𝑍 ) |
| 22 |
|
pm3.2 |
⊢ ( 𝑦 ∈ 𝑋 → ( 𝑦 ≠ 𝑍 → ( 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍 ) ) ) |
| 23 |
21 22
|
syl5com |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 ∈ 𝑋 → ( 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍 ) ) ) |
| 24 |
|
eldifsn |
⊢ ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ↔ ( 𝑦 ∈ 𝑋 ∧ 𝑦 ≠ 𝑍 ) ) |
| 25 |
23 24
|
imbitrrdi |
⊢ ( ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 ∈ 𝑋 → 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 26 |
25
|
imdistanda |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) ) |
| 27 |
|
ancom |
⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ↔ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ 𝑋 ) ) |
| 28 |
|
ancom |
⊢ ( ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ↔ ( ( 𝑦 𝐻 𝑥 ) = 𝑈 ∧ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ) ) |
| 29 |
26 27 28
|
3imtr4g |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) → ( 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ∧ ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 30 |
29
|
reximdv2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 → ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 31 |
10 30
|
impbid2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 32 |
7 31
|
sylan2 |
⊢ ( ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) ∧ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ) → ( ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 33 |
32
|
ralbidva |
⊢ ( ( 𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ) → ( ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ↔ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) |
| 34 |
33
|
pm5.32da |
⊢ ( 𝑅 ∈ RingOps → ( ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ↔ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 35 |
34
|
pm5.32i |
⊢ ( ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ ( 𝑋 ∖ { 𝑍 } ) ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |
| 36 |
6 35
|
bitri |
⊢ ( 𝑅 ∈ DivRingOps ↔ ( 𝑅 ∈ RingOps ∧ ( 𝑈 ≠ 𝑍 ∧ ∀ 𝑥 ∈ ( 𝑋 ∖ { 𝑍 } ) ∃ 𝑦 ∈ 𝑋 ( 𝑦 𝐻 𝑥 ) = 𝑈 ) ) ) |