Metamath Proof Explorer


Theorem igenidl2

Description: The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010)

Ref Expression
Assertion igenidl2 ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑅 IdlGen 𝐼 ) = 𝐼 )

Proof

Step Hyp Ref Expression
1 eqid ( 1st𝑅 ) = ( 1st𝑅 )
2 eqid ran ( 1st𝑅 ) = ran ( 1st𝑅 )
3 1 2 idlss ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → 𝐼 ⊆ ran ( 1st𝑅 ) )
4 1 2 igenval ( ( 𝑅 ∈ RingOps ∧ 𝐼 ⊆ ran ( 1st𝑅 ) ) → ( 𝑅 IdlGen 𝐼 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝐼𝑗 } )
5 3 4 syldan ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑅 IdlGen 𝐼 ) = { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝐼𝑗 } )
6 intmin ( 𝐼 ∈ ( Idl ‘ 𝑅 ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝐼𝑗 } = 𝐼 )
7 6 adantl ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → { 𝑗 ∈ ( Idl ‘ 𝑅 ) ∣ 𝐼𝑗 } = 𝐼 )
8 5 7 eqtrd ( ( 𝑅 ∈ RingOps ∧ 𝐼 ∈ ( Idl ‘ 𝑅 ) ) → ( 𝑅 IdlGen 𝐼 ) = 𝐼 )