Metamath Proof Explorer


Theorem idlmulssprm

Description: Let P be a prime ideal containing the product ( I .X. J ) of two ideals I and J . Then I C_ P or J C_ P . (Contributed by Thierry Arnoux, 13-Apr-2024)

Ref Expression
Hypotheses idlmulssprm.1 × ˙ = LSSum mulGrp R
idlmulssprm.2 φ R Ring
idlmulssprm.3 φ P PrmIdeal R
idlmulssprm.4 φ I LIdeal R
idlmulssprm.5 φ J LIdeal R
idlmulssprm.6 φ I × ˙ J P
Assertion idlmulssprm φ I P J P

Proof

Step Hyp Ref Expression
1 idlmulssprm.1 × ˙ = LSSum mulGrp R
2 idlmulssprm.2 φ R Ring
3 idlmulssprm.3 φ P PrmIdeal R
4 idlmulssprm.4 φ I LIdeal R
5 idlmulssprm.5 φ J LIdeal R
6 idlmulssprm.6 φ I × ˙ J P
7 4 5 jca φ I LIdeal R J LIdeal R
8 6 ad2antrr φ x I y J I × ˙ J P
9 eqid Base R = Base R
10 eqid R = R
11 eqid mulGrp R = mulGrp R
12 eqid LIdeal R = LIdeal R
13 9 12 lidlss I LIdeal R I Base R
14 4 13 syl φ I Base R
15 14 ad2antrr φ x I y J I Base R
16 9 12 lidlss J LIdeal R J Base R
17 5 16 syl φ J Base R
18 17 ad2antrr φ x I y J J Base R
19 simplr φ x I y J x I
20 simpr φ x I y J y J
21 9 10 11 1 15 18 19 20 elringlsmd φ x I y J x R y I × ˙ J
22 8 21 sseldd φ x I y J x R y P
23 22 anasss φ x I y J x R y P
24 23 ralrimivva φ x I y J x R y P
25 9 10 prmidl R Ring P PrmIdeal R I LIdeal R J LIdeal R x I y J x R y P I P J P
26 2 3 7 24 25 syl1111anc φ I P J P