Metamath Proof Explorer


Theorem pridln1

Description: A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024)

Ref Expression
Hypotheses pridln1.1 B=BaseR
pridln1.2 1˙=1R
Assertion pridln1 RRingILIdealRIB¬1˙I

Proof

Step Hyp Ref Expression
1 pridln1.1 B=BaseR
2 pridln1.2 1˙=1R
3 eqid LIdealR=LIdealR
4 3 1 2 lidl1el RRingILIdealR1˙II=B
5 4 necon3bbid RRingILIdealR¬1˙IIB
6 5 biimp3ar RRingILIdealRIB¬1˙I