Metamath Proof Explorer


Theorem pridln1

Description: A proper ideal cannot contain the ring unity. (Contributed by Thierry Arnoux, 9-Apr-2024)

Ref Expression
Hypotheses pridln1.1 B = Base R
pridln1.2 1 ˙ = 1 R
Assertion pridln1 R Ring I LIdeal R I B ¬ 1 ˙ I

Proof

Step Hyp Ref Expression
1 pridln1.1 B = Base R
2 pridln1.2 1 ˙ = 1 R
3 eqid LIdeal R = LIdeal R
4 3 1 2 lidl1el R Ring I LIdeal R 1 ˙ I I = B
5 4 necon3bbid R Ring I LIdeal R ¬ 1 ˙ I I B
6 5 biimp3ar R Ring I LIdeal R I B ¬ 1 ˙ I