Metamath Proof Explorer


Theorem prmidlidl

Description: A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Thierry Arnoux, 12-Jan-2024)

Ref Expression
Assertion prmidlidl R Ring P PrmIdeal R P LIdeal R

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid R = R
3 1 2 isprmidl R Ring P PrmIdeal R P LIdeal R P Base R a LIdeal R b LIdeal R x a y b x R y P a P b P
4 3 biimpa R Ring P PrmIdeal R P LIdeal R P Base R a LIdeal R b LIdeal R x a y b x R y P a P b P
5 4 simp1d R Ring P PrmIdeal R P LIdeal R